Skip to main content

Investigating Biochemical Constituents of Cymbopogon citratus Leaf: Prospects on Total Corrosion of Concrete Steel-Reinforcement in Acidic-Sulphate Medium

  • Conference paper
  • First Online:
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings

Abstract

In this paper, the biochemical constituents of Cymbopogon citratus leaf were investigated by atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FT-IR) and phytochemical screening analyses for assessing its steel-rebar corrosion-protection prospects. AAS results showed that the leaf contained Fe = 4,641.025 μg/g, Mn = 849.5069 μg/g, Cu = 171.045 μg/g, Pb = 13.2938 μg/g, Ni = 11.5187 μg/g, Cd = 4.9310 μg/g, but Cr = 0.0 μg/g. FT-IR indicates the leaf-extract contained S-, N-, O-containing heteroatoms and aromatic compounds, which are rich in π-electrons and that are known to inhibit steel-rebar corrosion. Phytochemical screening results showed that Cymbopogon citratus leaf-extract contains tannins, phlobatannins, saponins, glycosides, flavonoids, steroids and terpenoids. Macrocell corrosion tests, as per ASTM G109-99a, showed that the plant reduced total corrosion in 0.5 M H2SO4-immersed steel-reinforced concrete samples. These indicated positive prospects of Cymbopogon citratus as an eco-friendly inhibitor of steel-reinforcement corrosion in concretes designed for acidic sulphate service-environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D.M. Bastidas, M. Criado, S. Fajardo, A.L. Iglesia, J.M. Bastidas, Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement Concr. Compos. 61, 1–6 (2015)

    Article  Google Scholar 

  2. J.O. Okeniyi, I.O. Oladele, O.M. Omoniyi, C.A. Loto, A.P.I. Popoola, Inhibition and compressive-strength performance of Na2Cr2O7 and C10H14N2Na2O8·2H2O in steel-reinforced concrete in corrosive environments. Can. J. Civ. Eng. 42, 408–416 (2015)

    Article  Google Scholar 

  3. F.-L. Fei, J. Hu, J.-X. Wei, Q.-J. Yu, Z.-S. Chen, Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor. Constr. Build. Mater. 70, 43–53 (2014)

    Article  Google Scholar 

  4. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Corrosion inhibition performance of Rhizophora mangle L bark-extract on concrete steel-reinforcement in industrial/microbial simulating-environment. Int. J. Electrochem. Sci. 9, 4205–4216 (2014)

    Google Scholar 

  5. J.O. Okeniyi, I.J. Ambrose, I.O. Oladele, C.A. Loto, A.P.I. Popoola, Electrochemical performance of sodium dichromate partial replacement models by triethanolamine admixtures on steel-rebar corrosion in concretes. Int. J. Electrochem. Sci. 8, 10758–10771 (2013)

    Google Scholar 

  6. Y. Tang, G. Zhang, Y. Zuo, The inhibition effects of several inhibitors on rebar in acidified concrete pore solution. Constr. Build. Mater. 28, 327–332 (2012)

    Article  Google Scholar 

  7. J.O. Okeniyi, O.A. Omotosho, O.O. Ajayi, C.A. Loto, Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media. Constr. Build. Mater. 50, 448–456 (2014)

    Article  Google Scholar 

  8. S.A. Asipita, M. Ismail, M.Z. Abd Majid, Z.A. Majid, C. Abdullahb, J. Mirza, Green Bambusa arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete. J. Clean. Prod. 67, 139–146 (2014)

    Google Scholar 

  9. J.O. Okeniyi, O.A. Omotosho, O. Ajayi, O.O. James, C.A. Loto, Modelling the performance of sodium nitrite and aniline as inhibitors in the corrosion of steel-reinforced concrete. Asian J. Appl. Sci. 5, 132–143 (2012)

    Article  Google Scholar 

  10. O.A. Omotosho, J.O. Okeniyi, O.O. Ajayi, C.A. Loto, Effect of synergies of K2Cr2O7, K2CrO4, NaNO2 and aniline inhibitors on the corrosion potential response of steel reinforced concrete in saline medium. Int. J. Environ. Sci. 2, 2346–2359 (2012)

    Google Scholar 

  11. M. Ismail, P.B. Raja, A.A. Salawu, Developing deeper understanding of green inhibitors for corrosion of reinforcing steel in concrete, in Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, ed. by H. Lim (IGI Global, Hershey, PA, 2015), pp. 118–146

    Google Scholar 

  12. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Rhizophora mangle L. effects on steel-reinforced concrete in 0.5 M H2SO4: implications for corrosion-degradation of wind-energy structures in industrial environments. Energy Procedia 50, 429–436 (2014)

    Article  Google Scholar 

  13. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Electrochemical performance of Anthocleista djalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Trans. Indian Inst. Met. 67, 959–969 (2014)

    Article  Google Scholar 

  14. A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros. Sci. 51, 2848–2856 (2009)

    Article  Google Scholar 

  15. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, “Anticorrosion performance of Anthocleista djalonensis on steel-reinforced concrete in a sulphuric-acid medium. HKIE Trans. (2016). doi:10.1080/1023697X.2016.1201437

    Google Scholar 

  16. J.O. Okeniyi, O.O. Ogunlana, O.E. Ogunlana, T.F. Owoeye, E.T. Okeniyi, Biochemical characterisation of the leaf of Morinda lucida: prospects for environmentally-friendly steel-rebar corrosion-protection in aggressive medium, in TMS2015 Supplemental Proceedings (Wiley, Hoboken, NJ, USA, 2015), pp. 635–644. doi:10.1002/9781119093466.ch78

  17. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Morinda lucida effects on steel-reinforced concrete in 3.5% NaCl: Implications for corrosion-protection of wind-energy structures in saline/marine environments. Energy Procedia 50, 421–428 (2014)

    Article  Google Scholar 

  18. C.E. Ekpenyong, E.E. Akpan, N.E. Daniel, Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus Stapf (DC) leaf extract. J. Pharm. Phytochem. 3, 133–141 (2014)

    Google Scholar 

  19. K. Manvitha, B. Bidya, Review on pharmacological activity of Cymbopogon citratus. Int. J. Herbal Med. 1, 5–7 (2014)

    Google Scholar 

  20. V. Francisco, A. Figueirinha, G. Costa, J. Liberal, M.C. Lopes, C. García-Rodríguez, C.F.G.C. Geraldes, M.T. Cruz, M.T. Batista, Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J. Func. Foods 10, 436–443 (2014)

    Article  Google Scholar 

  21. G. Shah, R. Shri, V. Panchal, N. Sharma, B. Singh, A.S. Mann, Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2, 3–8 (2011)

    Article  Google Scholar 

  22. S.K. Olorunnisola, H.T. Asiyanbi, A.M. Hammed, S. Simsek, Biological properties of lemongrass: an overview. Int. Food Res. J. 21, 455–462 (2014)

    Google Scholar 

  23. S.R. Kanatt, S.P. Chawla, A. Sharma, Antioxidant and radio-protective activities of lemon grass and star anise extracts. Food Biosci. 6, 24–30 (2014)

    Article  Google Scholar 

  24. V. Francisco, G. Costa, A. Figueirinha, C. Marques, P. Pereira, B.M. Neves, M.C. Lopes, C. García-Rodríguez, M.T. Cruz, M.T. Batista, Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: contribution of chlorogenic acid. J. Ethnopharmacol. 148, 126–134 (2013)

    Article  Google Scholar 

  25. J.O. Okeniyi, O.A. Omotosho, O.O. Ogunlana, E.T. Okeniyi, T.F. Owoeye, A.S. Ogbiye, E.O. Ogunlana, Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia 74, 1274–1281 (2015)

    Article  Google Scholar 

  26. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Electrochemical performance of Phyllanthus muellerianus on the corrosion of concrete steel-reinforcement in industrial/microbial simulating-environment. Portugaliae Electrochimica Acta 32, 199–211 (2014)

    Article  Google Scholar 

  27. H.O. Edeoga, D.E. Okwu, B.O. Mbaebie, Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 4, 685–688 (2005)

    Article  Google Scholar 

  28. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Modelling Rhizophora mangle L bark-extract effects on concrete steel-rebar in 0.5 M H2SO4: implications on concentration for effective corrosion-inhibition, in TMS2015 Supplemental Proceedings (Wiley, Hoboken, NJ, USA, 2015), pp. 751–758. doi:10.1002/9781119093466.ch92

  29. ASTM G109-99a, Standard Test Method for Determining the Effects of Chemical Admixtures on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments (ASTM International, West Conshohocken, PA, 2005)

    Google Scholar 

  30. J.O. Okeniyi, O.A. Omotosho, C.A. Loto, A.P.I. Popoola, Corrosion rate and noise resistance correlation from NaNO2-admixed steel-reinforced concrete. Asian J. Sci. Res. 8, 454–465 (2015)

    Article  Google Scholar 

  31. G.E. Abdelaziz, A.M.K. Abdelalim, Y.A. Fawzy, Evaluation of the short and long-term efficiencies of electro-chemical chloride extraction. Cem. Concr. Res. 39, 727–732 (2009)

    Article  Google Scholar 

  32. W.J. McCarter, Ø. Vennesland, Sensor systems for use in reinforced concrete structures. Constr. Build. Mater. 18, 351–358 (2004)

    Article  Google Scholar 

  33. United States Environmental Protection Agency (USEPA), Ecological Soil Screening Levels for Iron (USEPA, Washington, DC, 2003)

    Google Scholar 

  34. J. Coates, Interpretation of infrared spectra, a practical approach, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 10815–10837

    Google Scholar 

  35. P. Mourya, S. Banerjee, M.M. Singh, Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros. Sci. 85, 352–363 (2014)

    Article  Google Scholar 

  36. M. Sangeetha, S. Rajendran, J. Sathiyabama, A. Krishnaveni, P. Shanthy, N. Manimaran, B. Shyamaladevi, Corrosion inhibition by an aqueous extract of Phyllanthus amarus. Portugaliae Electrochimica Acta 29, 429–444 (2011)

    Article  Google Scholar 

  37. J.O. Okeniyi, O.M. Omoniyi, S.O. Okpala, C.A. Loto, A.P.I. Popoola, Effect of ethylenediaminetetraacetic disodium dihydrate and sodium nitrite admixtures on steel-rebar corrosion in concrete. Eur. J. Environ. Civil Eng. 17, 398–416 (2013)

    Article  Google Scholar 

  38. T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report. Constr. Build. Mater. 22, 609–622 (2008)

    Article  Google Scholar 

  39. A.M. Vaysburd, P.H. Emmons, Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts. Cement Concr. Compos. 26, 255–263 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua Olusegun Okeniyi or Elizabeth Toyin Okeniyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Okeniyi, J.O., Okeniyi, E.T., Ogunlana, O.O., Owoeye, T.F., Ogunlana, O.E. (2017). Investigating Biochemical Constituents of Cymbopogon citratus Leaf: Prospects on Total Corrosion of Concrete Steel-Reinforcement in Acidic-Sulphate Medium. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_32

Download citation

Publish with us

Policies and ethics