Skip to main content

Osteoporosis and Fatigue Fracture Prevention by Analysis of Bone Microdamage

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

We analyzed the conditions under which microcracks, generated by fatigue, affect the fracture properties of bones; this has clinical relevance to stress fractures and osteoporosis. A novel theoretical model was developed to describe microcrack behaviour, using probabilistic analysis and the concept of a characteristic length. In this way we identified effects of aging and gamma radiation sterilisation, which weaken bone and cause accelerated development of microcracks. This work will help in the development of better predictive models to understand and prevent stress fractures and osteoporosis-related fragility fractures.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The reported results were obtained by the group Fergal J. O’Brien, T.Clive Lee and David Taylor and Gerardo Presbitero.

References

  1. H.M. Frost, Some ABC’s of skeletal pathophysiology: 5. Calcif. Tissue Int. 49, 229–231 (1991)

    Article  Google Scholar 

  2. D.B. Burr et al., Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15 (1997)

    Article  Google Scholar 

  3. B.D. Agarwal, L.J. Broutman (eds.), Analysis and Performance of Composite Materials (Wiley, New York, 1980), pp. 287–362

    Google Scholar 

  4. P. Zioupos, C. Kaffy, Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone. Int. J. Fract. 139, 407–424 (2006)

    Article  Google Scholar 

  5. H.M. Frost, Presence of microscopic cracks in vivo in bone. Henry Ford Hosp. Med. Bull. 8, 25–35 (1960)

    Google Scholar 

  6. T.M. Wright, W.C. Hayes, Tensile testing of bone over a side range of strain rates: effects of strain rate, microstructure and density. Med. Biol. Eng. 14, 671–680 (1976)

    Article  Google Scholar 

  7. D.R. Carter, W.C. Hayes, Compact Bone Fatigue Damage: A Microscopic Examination. Clin. Orthop. Relat. Res. 127, 265–274 (1977)

    Google Scholar 

  8. R. Wank, K.J. Jepsen, Aged rat bone fatigues in a fundamentally different manner from yonder adult bone. 47 annual meeting, Orthopaedic Research Society (2001)

    Google Scholar 

  9. T. Diab et al., Age-dependent fatigue behavior of human cortical bone. Eur. J. Morphol. 45(1/2), 53–59 (2005)

    Article  Google Scholar 

  10. T.L. Norman, T.M. Little, Y.N. Yeni, Age-related changes in porosity and mineralization and in-service damage accumulation. J. Biomech. 41, 2868–2873 (2008)

    Article  Google Scholar 

  11. O. Akkus, Fracture resistance of gamma radiation sterilized cortical bone allografts. J. Orthop. Res. 19, 927–934 (2001)

    Article  Google Scholar 

  12. T.C. Lee et al., Sequential labelling of microdamage in bone using chelating agents. J. Orthop. Res. 18, 322–325 (2000)

    Article  Google Scholar 

  13. F.J. O’Brien, D. Taylor, T.C. Lee, Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36(7), 973–980 (2003)

    Google Scholar 

  14. F.J. O’ Brien, D. Taylor, T.C. Lee, The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. 23(2), 475–480 (2005)

    Google Scholar 

  15. G. Presbitero, F.J. O’Brien, T.C. Lee, D. Taylor, Distribution of microcrack lengths in bone in vivo and in vitro. J. Theor. Biol. 7(304), 164–171 (2012)

    Google Scholar 

  16. F.J. O’Brien, D. Tayor, T.C. Lee, An improved labelling technique for monitoring microcrack growth in compact bone. J. Biomech. 35(4), 523–526 (2002)

    Google Scholar 

  17. K.L. Gellasch, V.L. Kalscheur, Fatigue microdamage in the radial predilection site for osteosarcoma in dogs. Am. J. Vet. Res. 63(6), 896–899 (2002)

    Article  Google Scholar 

  18. D.B. Burr, Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31(4), 337–345 (1998)

    Article  Google Scholar 

  19. M.F. Khan, Microdamage and Remodelling in an Ovine Model (NUI, Royal College of Surgeons in Ireland, 2010)

    Google Scholar 

  20. D. Vashishth, J.C. Behiri, W. Bonfield, Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30(8), 763–769 (1997)

    Article  Google Scholar 

  21. P. Lucksanasombool, W.A. Higgs, Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials 22, 3127–3132 (2001)

    Article  Google Scholar 

  22. R.K. Nalla et al., Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26(14), 2183–2195 (2005)

    Article  Google Scholar 

  23. D.R. Carter, W.E. Caler, Cycle-dependent and time-dependent bone fracture with repeated loading. J. Biomech. Eng. 105, 166–170 (1983)

    Article  Google Scholar 

  24. P. Zioupos, X.T. Wang, J.D. Currey, Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 29(8), 989–1002 (1996)

    Article  Google Scholar 

  25. D. Taylor, Fatigue of bone and bones: an analysis based on stressed volume. J. Orthop. Res. 16, 163–169 (1998)

    Article  Google Scholar 

  26. D. Taylor et al., Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results. J. Biomech. 32(11), 1199–1203 (1999)

    Article  Google Scholar 

  27. D. Taylor, J.G. Hazenberg, T.C. Lee, The cellular transducer in damage-stimulated bone remodelling: a theoretical investigation using fracture mechanics. J. Theor. Biol. 225(1), 65–75 (2003)

    Article  Google Scholar 

  28. J.J. Kruzic, R.O. Ritchie, Fatigue of mineralized tissues: cortical bone and dentin. J. Mech. Behav. Biomed. Mater. (2007)

    Google Scholar 

  29. M.B. Schaffler, K. Choi, C. Milgrom, Aging and matrix microdamage accumulation in human compact bone. Bone 17(6), 521–525 (1995)

    Article  Google Scholar 

  30. J.D. Currey et al., Effects of ionizing radiation on the mechanical properties of human bone. J. Orthop. Res. 15(1), 111–117 (1997)

    Article  Google Scholar 

  31. E.J. Mitchell et al., The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. J. Bone Joint Surg. Am. 86-A(12), 2648–2657 (2004)

    Google Scholar 

  32. O. Akkus, R.M. Belaney, Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude. J. Orthop. Res. 23, 1054–1058 (2005)

    Article  Google Scholar 

  33. Z. Zhou et al., Mechanical strength of cortical allografts with gamma radiation versus ethylene oxide sterilization. Acta Orthop. Belg. 77(5), 670–675 (2011)

    Google Scholar 

  34. A. Kaminski et al., Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods. Cell Tissue Bank 13, 363–374 (2012)

    Article  Google Scholar 

  35. A. Islam et al., Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone. Clin. Orthop. Relat. Res. 4(3), 827–835 (2016)

    Article  Google Scholar 

  36. U. Andreaus, M. Colloca, A. Toscano, Mechanical behavior of a prosthetized human femur: a comparative analysis between walking and stair climbing by using the finite element model. Biophys. Bioeng. Lett. 1, 1–15 (2008)

    Google Scholar 

  37. D.B. Burr, C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, A. Simkin, In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Presbítero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Presbítero, G., Gutiérrez, D., Taylor, D. (2017). Osteoporosis and Fatigue Fracture Prevention by Analysis of Bone Microdamage. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_30

Download citation

Publish with us

Policies and ethics