Deep Learning for Classification of Dental Plaque Images

  • Sultan ImangaliyevEmail author
  • Monique H. van der Veen
  • Catherine M. C. Volgenant
  • Bart J. F. Keijser
  • Wim Crielaard
  • Evgeni Levin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)


Dental diseases such as caries or gum disease are caused by prolonged exposure to pathogenic plaque. Assessment of such plaque accumulation can be used to identify individuals at risk. In this work we present an automated dental red autofluorescence plaque image classification model based on application of Convolutional Neural Networks (CNN) on Quantitative Light-induced Fluorescence (QLF) images. CNN model outperforms other state of the art classification models providing a 0.75 ± 0.05 F1-score on test dataset. The model directly benefits from multi-channel representation of the images resulting in improved performance when all three colour channels were used.


Deep learning Convolutional neural networks Computer vision Bioinformatics Computational biology Quantitative light-induced fluorescence Dentistry 


  1. 1.
    Bergstra, J., et al.: Theano: deep learning on GPUs with Python. In: NIPS 2011, BigLearning Workshop, Granada, Spain (2011)Google Scholar
  2. 2.
    Jarrett, K., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)Google Scholar
  3. 3.
    Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  4. 4.
    LeCun, Y., et al.: Convolutional networks and applications in vision. In: ISCAS, pp. 253–256 (2010)Google Scholar
  5. 5.
    Lee, E.S., et al.: Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by quantitative light-induced fluorescence-digital (QLF-D). J. Dent. 41(12), 1264–1270 (2013)CrossRefGoogle Scholar
  6. 6.
    Marsh, P.: Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res. 8(2), 263–271 (1994)Google Scholar
  7. 7.
    Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Pretty, I., et al.: The intra-and inter-examiner reliability of Quantitative Light-induced Fluorescence (QLF) analyses. Br. Dent. J. 193(2), 105–109 (2002)CrossRefGoogle Scholar
  9. 9.
    Stutz, D.: Understanding convolutional neural networks (2014)Google Scholar
  10. 10.
    Van der Veen, M., et al.: Red autofluorescence of dental plaque bacteria. Caries Res. 40(6), 542–545 (2006)CrossRefGoogle Scholar
  11. 11.
    van der Veen, M.H., Volgenant, C.M., Keijser, B., Jacob Bob, M., Crielaard, W.: Dynamics of red fluorescent dental plaque during experimental gingivitis - a cohort study. J. Dent. 48, 71–76 (2016)CrossRefGoogle Scholar
  12. 12.
    Volgenant, C.M., Mostajo, M.F., Rosema, N.A., Weijden, F.A., Cate, J.M., Veen, M.H.: Comparison of red autofluorescing plaque and disclosed plaque-a cross-sectional study. Clin. Oral Invest. 20, 1–8 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sultan Imangaliyev
    • 1
    • 2
    Email author
  • Monique H. van der Veen
    • 2
  • Catherine M. C. Volgenant
    • 2
  • Bart J. F. Keijser
    • 1
    • 2
  • Wim Crielaard
    • 2
  • Evgeni Levin
    • 1
  1. 1.Netherlands Organisation for Applied Scientific Research, TNO Earth, Life and Social SciencesZeistThe Netherlands
  2. 2.Academic Centre for Dentistry AmsterdamUniversity of Amsterdam and Free University AmsterdamAmsterdamThe Netherlands

Personalised recommendations