Skip to main content

Combining Genetic Algorithm with the Multilevel Paradigm for the Maximum Constraint Satisfaction Problem

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10122))

Included in the following conference series:

  • 2554 Accesses

Abstract

Genetic algorithms (GA) which belongs to the class of evolutionary algorithms are regarded as highly successful algorithms when applied to a broad range of discrete as well continuous optimization problems. This paper introduces a hybrid approach combining genetic algorithm with the multilevel paradigm for solving the maximum constraint satisfaction problem (Max-CSP). The multilevel paradigm refers to the process of dividing large and complex problems into smaller ones, which are hopefully much easier to solve, and then work backward towards the solution of the original problem, using the solution reached from a child level as a starting solution for the parent level. The promising performances achieved by the proposed approach are demonstrated by comparisons made to solve conventional random benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huerta-Amante, D.Á., Terashima-Marín, H.: Adaptive penalty weights when solving congress timetabling. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 144–153. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30498-2_15

    Chapter  Google Scholar 

  2. Bouhmala, N.: A variable depth search algorithm for binary constraint satisfaction problems. Math. Probl. Eng. 2015, 10 (2015). Article ID 637809, doi:10.1155/2015/637809

    Google Scholar 

  3. Davenport, A., Tsang, E., Wang, C., Zhu, K.: Genet: a connectionist architecture for solving constraint satisfaction problems by iterative improvement. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (1994)

    Google Scholar 

  4. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang, Z., Chu, Y., Qiao, K., Feng, X., Xu, K.: Combining edge weight and vertex weight for minimum vertex cover problem. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 71–81. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08016-1_7

    Chapter  Google Scholar 

  6. Galinier, P., Hao, J.-K.: Tabu search for maximal constraint satisfaction problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 196–208. Springer, Heidelberg (1997). doi:10.1007/BFb0017440

    Chapter  Google Scholar 

  7. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of the AAAI 1996, pp. 246–252 (1996)

    Google Scholar 

  8. Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_16

    Chapter  Google Scholar 

  10. Lee, H.-J., Cha, S.-J., Yu, Y.-H., Jo, G.-S.: Large neighborhood search using constraint satisfaction techniques in vehicle routing problem. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS (LNAI), vol. 5549, pp. 229–232. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01818-3_30

    Chapter  Google Scholar 

  11. Minton, S., Johnson, M., Philips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling scheduling problems. Artif. Intell. 58, 161–205 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morris, P.: The breakout method for escaping from local minima. In: Proceeding AAAI 1993, Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 40–45 (1993)

    Google Scholar 

  13. Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problems. J. Heuristics 17, 181–199 (2011)

    Article  Google Scholar 

  14. Schuurmans, D., Southey, F., Holte, E.: The exponentiated subgradient algorithm for heuristic Boolean programming. In: 17th International Joint Conference on Artificial Intelligence, pp. 334–341. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  15. Shang, E., Wah, B.: A discrete Lagrangian-based global-search method for solving satisfiability problems. J. Glob. Optim. 12(1), 61–99 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Voudouris, C., Tsang, E.: Guided local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operation Research and Management Science, vol. 57, pp. 185–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Wallace, R.J., Freuder, E.C.: Heuristic methods for over-constrained constraint satisfaction problems. In: Jampel, M., Freuder, E., Maher, M. (eds.) OCS 1995. LNCS, vol. 1106, pp. 207–216. Springer, Heidelberg (1996). doi:10.1007/3-540-61479-6_23

    Chapter  Google Scholar 

  18. Xu, W.: Satisfiability transition and experiments on a random constraint satisfaction problem model. Int. J. Hybrid Inf. Technol. 7(2), 191–202 (2014)

    Article  Google Scholar 

  19. Zhou, Y., Zhou, G., Zhang, J.: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems. Appl. Math. Inf. Sci. 7(1), 379–388 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Bouhmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bouhmala, N. (2016). Combining Genetic Algorithm with the Multilevel Paradigm for the Maximum Constraint Satisfaction Problem. In: Pardalos, P., Conca, P., Giuffrida, G., Nicosia, G. (eds) Machine Learning, Optimization, and Big Data. MOD 2016. Lecture Notes in Computer Science(), vol 10122. Springer, Cham. https://doi.org/10.1007/978-3-319-51469-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51469-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51468-0

  • Online ISBN: 978-3-319-51469-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics