Combining Genetic Algorithm with the Multilevel Paradigm for the Maximum Constraint Satisfaction Problem

  • Noureddine BouhmalaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)


Genetic algorithms (GA) which belongs to the class of evolutionary algorithms are regarded as highly successful algorithms when applied to a broad range of discrete as well continuous optimization problems. This paper introduces a hybrid approach combining genetic algorithm with the multilevel paradigm for solving the maximum constraint satisfaction problem (Max-CSP). The multilevel paradigm refers to the process of dividing large and complex problems into smaller ones, which are hopefully much easier to solve, and then work backward towards the solution of the original problem, using the solution reached from a child level as a starting solution for the parent level. The promising performances achieved by the proposed approach are demonstrated by comparisons made to solve conventional random benchmark problems.


Maximum constraint satisfaction problem Genetic algorithms Multilevel paradigm 


  1. 1.
    Huerta-Amante, D.Á., Terashima-Marín, H.: Adaptive penalty weights when solving congress timetabling. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 144–153. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30498-2_15 CrossRefGoogle Scholar
  2. 2.
    Bouhmala, N.: A variable depth search algorithm for binary constraint satisfaction problems. Math. Probl. Eng. 2015, 10 (2015). Article ID 637809, doi: 10.1155/2015/637809
  3. 3.
    Davenport, A., Tsang, E., Wang, C., Zhu, K.: Genet: a connectionist architecture for solving constraint satisfaction problems by iterative improvement. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (1994)Google Scholar
  4. 4.
    Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fang, Z., Chu, Y., Qiao, K., Feng, X., Xu, K.: Combining edge weight and vertex weight for minimum vertex cover problem. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 71–81. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08016-1_7 CrossRefGoogle Scholar
  6. 6.
    Galinier, P., Hao, J.-K.: Tabu search for maximal constraint satisfaction problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 196–208. Springer, Heidelberg (1997). doi: 10.1007/BFb0017440 CrossRefGoogle Scholar
  7. 7.
    Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of the AAAI 1996, pp. 246–252 (1996)Google Scholar
  8. 8.
    Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002). doi: 10.1007/3-540-46135-3_16 CrossRefGoogle Scholar
  10. 10.
    Lee, H.-J., Cha, S.-J., Yu, Y.-H., Jo, G.-S.: Large neighborhood search using constraint satisfaction techniques in vehicle routing problem. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS (LNAI), vol. 5549, pp. 229–232. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01818-3_30 CrossRefGoogle Scholar
  11. 11.
    Minton, S., Johnson, M., Philips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling scheduling problems. Artif. Intell. 58, 161–205 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Morris, P.: The breakout method for escaping from local minima. In: Proceeding AAAI 1993, Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 40–45 (1993)Google Scholar
  13. 13.
    Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problems. J. Heuristics 17, 181–199 (2011)CrossRefGoogle Scholar
  14. 14.
    Schuurmans, D., Southey, F., Holte, E.: The exponentiated subgradient algorithm for heuristic Boolean programming. In: 17th International Joint Conference on Artificial Intelligence, pp. 334–341. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  15. 15.
    Shang, E., Wah, B.: A discrete Lagrangian-based global-search method for solving satisfiability problems. J. Glob. Optim. 12(1), 61–99 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Voudouris, C., Tsang, E.: Guided local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operation Research and Management Science, vol. 57, pp. 185–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Wallace, R.J., Freuder, E.C.: Heuristic methods for over-constrained constraint satisfaction problems. In: Jampel, M., Freuder, E., Maher, M. (eds.) OCS 1995. LNCS, vol. 1106, pp. 207–216. Springer, Heidelberg (1996). doi: 10.1007/3-540-61479-6_23 CrossRefGoogle Scholar
  18. 18.
    Xu, W.: Satisfiability transition and experiments on a random constraint satisfaction problem model. Int. J. Hybrid Inf. Technol. 7(2), 191–202 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhou, Y., Zhou, G., Zhang, J.: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems. Appl. Math. Inf. Sci. 7(1), 379–388 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Maritime Technology and InnovationUniversity of SouthEastHortenNorway

Personalised recommendations