An Enhanced Infra-Chromatic Bound for the Maximum Clique Problem

  • Pablo San SegundoEmail author
  • Jorge Artieda
  • Rafael Leon
  • Cristobal Tapia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)


There has been a rising interest in experimental exact algorithms for the maximum clique problem because the gap between the expected theoretical performance and the reported results in practice is becoming surprisingly large. One reason for this is the family of bounding functions denoted as infra-chromatic because they produce bounds which can be lower than the chromatic number of the bounded subgraph. In this paper we describe a way to enhance exact solvers with an additional infra-chromatic bounding function and report performance over a number of graphs from well known data sets. Moreover, the reported results show that the new enhanced procedure significantly outperforms state-of-the-art.


Infra-chromatic Clique Approximate-coloring Branch-and-bound Combinatorial optimization Search 



This work is funded by the Spanish Ministry of Economy and Competitiveness (grant NAVEGASE: DPI 2014-53525-C3-1-R).


  1. 1.
    Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 4, pp. 1–74. Springer, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Butenko, S., Chaovalitwongse, W., Pardalos, P. (eds.): Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)Google Scholar
  3. 3.
    San Segundo, P., Rodriguez-Losada, P., Matia, D., Galan, R.: Fast exact feature based data correspondence search with an efficient bit-parallel MCP solver. Appl. Intell. 32(3), 311–329 (2010)CrossRefGoogle Scholar
  4. 4.
    San Segundo, P., Rodriguez-Losada, D.: Robust global feature based data association with a sparse bit optimized maximum clique algorithm. IEEE Trans. Robot. 99, 1–7 (2013)Google Scholar
  5. 5.
    San Segundo, P., Artieda, J.: A novel clique formulation for the visual feature matching problem. Appl. Intell. 43(2), 325–342 (2015)CrossRefGoogle Scholar
  6. 6.
    Fahle, T.: Simple and fast: improving a branch-and-bound algorithm for maximum clique. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485–498. Springer, Heidelberg (2002). doi: 10.1007/3-540-45749-6_44 CrossRefGoogle Scholar
  7. 7.
    Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003). doi: 10.1007/3-540-45066-1_22 CrossRefGoogle Scholar
  8. 8.
    Segundo, S., Rodriguez-Losada, D, Jimenez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    San Segundo, P., Tapia, C.: Relaxed approximate coloring in exact maximum clique search. Comput. Oper. Res. 44, 185–192 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    San Segundo, P., Nikolaev, A., Batsyn, M.: Infra-chromatic bound for exact maximum clique search. Comput. Oper. Res. 64, 293–303 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, Md.S, Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11440-3_18 CrossRefGoogle Scholar
  13. 13.
    Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27, 397–416 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, C.-M., Quan, Z.: Combining graph structure exploitation and propositional reasoning for the maximum clique problem. In: Proceedings of ICTAI, pp. 344–351 (2010)Google Scholar
  15. 15.
    Li, C.-M., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of ICTAI, pp. 939–946 (2013)Google Scholar
  16. 16.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and nonapproximability — towards tight results. In: 1995 Proceedings of 36th Annual Symposium on Foundations of Computer Science, pp. 422–431. IEEE (1995)Google Scholar
  17. 17.
    Moon, J., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. Technical report, Computer Science Department, School of Humanities and Sciences, Stanford University, Stanford, CA, USA (1976)Google Scholar
  19. 19.
    Robson, J.M.: Finding a maximum independent set in time \( O(2^{{{n \mathord{\left/ {\vphantom {n 4}} \right. \kern-0pt} 4}}} ) \). Technical report 1251-01, LaBRI, Université de Bordeaux I (2001)Google Scholar
  20. 20.
    Lavnikevich, N.: On the complexity of maximum clique algorithms: usage of coloring heuristics leads to the \( \Omega \left( {2^{{{n \mathord{\left/ {\vphantom {n 5}} \right. \kern-0pt} 5}}} } \right) \) algorithm running time lower bound (2013)Google Scholar
  21. 21.
    Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms 5(4), 545–587 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pablo San Segundo
    • 1
    Email author
  • Jorge Artieda
    • 1
  • Rafael Leon
    • 1
  • Cristobal Tapia
    • 1
  1. 1.Center for Automation and Robotics (CAR)Polytechnic University of Madrid (UPM)MadridSpain

Personalised recommendations