Advertisement

Breast Cancer’s Microarray Data: Pattern Discovery Using Nonnegative Matrix Factorizations

  • Nicoletta Del BuonoEmail author
  • Flavia Esposito
  • Fabio Fumarola
  • Angelina Boccarelli
  • Mauro Coluccia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)

Abstract

One challenge in microarray analysis is to discover and capture valuable knowledge to understand biological processes and human disease mechanisms. Nonnegative Matrix Factorization (NMF) – a constrained optimization mechanism which decomposes a data matrix in terms of additive combination of non-negative factors– has been demonstrated to be a useful tool to reduce the dimension of gene expression data and to identify potentially interesting genes which explain latent structure hidden in microarray data.

In this paper, we detail how to use Nonnegative Matrix Factorization based on generalized Kullback-Leibler divergence to analyze gene expression profile data related to the cell line of mammary cancer MCF-7 and to pharmaceutical compounds connected to the metabolism of arachidonic acid. NMF technique is able to reduce the dimension of the considered genes-compounds matrix from thousands of genes to few metagenes and to extract information about the drugs that more affect these genes. We provide an experimental framework illustrating the technical steps one has to perform to use NMF to discover useful patterns from microarray data. In fact, the results obtained by NMF method could be used to select and characterize therapies that can be effective on biological functions involved in the neoplastic transformation process and to perform further biological investigations.

Keywords

Nonnegative matrix factorization Microarray data Metagenes Breast cancer 

References

  1. 1.
    Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Nat. Acad. Sci. 101(12), 4164–4169 (2004)CrossRefGoogle Scholar
  2. 2.
    Carmona-Saez, P., Pascual-Marqui, R.D., Tirado, F., Carazo, J.M., Pascual-Montano, A.: Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinform. 7(1), 1 (2006)CrossRefGoogle Scholar
  3. 3.
    Casalino, G., Del Buono, N., Mencar, C.: Non negative matrix factorizations for intelligent data analysis. In: Naik, G.R. (ed.) Non-negative Matrix Factorization Techniques: Advances in Theory and Applications, pp. 49–74. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  4. 4.
    Del Buono, N., Pio, G.: Non-negative matrix tri-factorization for co-clustering. Inf. Sci. 301(C), 13–26 (2015)CrossRefGoogle Scholar
  5. 5.
    Devarajan, K.: Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4(7), e1000029 (2008)CrossRefGoogle Scholar
  6. 6.
    Gaujoux, R., Seoighe, C.: A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11(1), 1 (2010)CrossRefGoogle Scholar
  7. 7.
    Gillis, N.: The why and how of nonnegative matrix factorization (2014). http://arxiv.org/pdf/1401.5226v2.pdf
  8. 8.
    Howe, L.R.: Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 9(4), 210 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hutchins, L.N., Murphy, S.M., Singh, P., Graber, J.H.: Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24, 2684–2690 (2008)CrossRefGoogle Scholar
  10. 10.
    Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007)CrossRefGoogle Scholar
  11. 11.
    Kossenkov, A.V., Ochs, M.F.: Matrix factorisation methods applied in microarray data analysis. Int. J. Data Min. Bioinform. 4(1), 72–90 (2010)CrossRefGoogle Scholar
  12. 12.
    Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., et al.: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795), 1929–1935 (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proceedings of the Advances in Neural Information Processing Systems Conference, vol. 13, pp. 556–562. MIT Press (2000)Google Scholar
  14. 14.
    Moschetta, M., Basile, A., Ferrucci, A., Frassanito, M., Rao, L., Ria, R., Solimando, A., Giuliani, N., Boccarelli, A., Fumarola, F., Coluccia, M., Rossini, B., Ruggieri, S., Nico, B., Maiorano, E., Ribatti, D., Roccaro, A., Vacca, A.: Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin. Cancer Res. 19(26), 4371–4382 (2013)CrossRefGoogle Scholar
  15. 15.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verastegui, E., Zlotnik, A.: Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001)CrossRefGoogle Scholar
  16. 16.
    Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., Carazo, J.M., Pascual-Montano, A.: GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 37(suppl. 2), W317–W322 (2009). http://nar.oxfordjournals.org/content/37/suppl_2/W317.abstract CrossRefGoogle Scholar
  17. 17.
    Harris, R.E., Casto, B.C., Harris, Z.H.: Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J. Clin. Oncol. 5(4), 677–692 (2014)CrossRefGoogle Scholar
  18. 18.
    Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)CrossRefGoogle Scholar
  19. 19.
    Yoo, J., Choi, S.: Orthogonal nonnegative matrix tri-factorization for co-clustering: multiplicative updates on Stiefel manifolds. Inf. Process. Manag. 46(5), 559–570 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nicoletta Del Buono
    • 1
    Email author
  • Flavia Esposito
    • 1
  • Fabio Fumarola
    • 2
  • Angelina Boccarelli
    • 3
  • Mauro Coluccia
    • 4
  1. 1.Department of MathematicsUniversity of Bari Aldo MoroBariItaly
  2. 2.Department of InformaticsUniversity of Bari Aldo MoroBariItaly
  3. 3.Department of Biomedical Sciences and Human OncologyUniversity of Bari Aldo MoroBariItaly
  4. 4.Department of Pharmacy – Drug SciencesUniversity of Bari Aldo MoroBariItaly

Personalised recommendations