Data-Based Forest Management with Uncertainties and Multiple Objectives

  • Markus HartikainenEmail author
  • Kyle Eyvindson
  • Kaisa Miettinen
  • Annika Kangas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)


In this paper, we present an approach of employing multiobjective optimization to support decision making in forest management planning. The planning is based on data representing so-called stands, each consisting of homogeneous parts of the forest, and simulations of how the trees grow in the stands under different treatment options. Forest planning concerns future decisions to be made that include uncertainty. We employ as objective functions both the expected values of incomes and biodiversity as well as the value at risk for both of these objectives. In addition, we minimize the risk level for both the income value and the biodiversity value. There is a tradeoff between the expected value and the value at risk, as well as between the value at risk of the two objectives of interest and, thus, decision support is needed to find the best balance between the conflicting objectives. We employ an interactive method where a decision maker iteratively provides preference information to find the most preferred management plan and at the same time learns about the interdependencies of the objectives.


Forest management planning Multiobjective optimization Interactive multiobjective optimization Pareto optimality Uncertainty 



We acknowledge Natural Resources Institute Finland Luke (for the MS-NFI data) and the Finish Research Institute VTT (for the segmentation). In addition, we thank IBM for allowing IBM® ILOG® CPLEX® Optimization Studio being used for academic work through the Academic initiative.


  1. Eyvindson, K., Cheng, Z.: Implementing the conditional value at risk approach for even-flow forest management planning. Can. J. For. Res. 46(5), 637–644 (2016)CrossRefGoogle Scholar
  2. Eyvindson, K., Kangas, A.: Evaluating the required scenario set size for stochastic programming in forest management planning: incorporating inventory and growth model uncertainty. Can. J. For. Sci. 46(3), 340–347 (2016a)Google Scholar
  3. Eyvindson, K., Kangas, A.: Integrating risk preferences in forest harvest scheduling. Ann. For. Sci. 73, 321–330 (2016b)CrossRefGoogle Scholar
  4. Kangas, A., Kurttila, M., Hujala, T., Eyvindson, K., Kangas, J.: Decision Support for Forest Management. Managing forest ecosystems, 2nd edn., vol. 30. 307 p. Springer, New York (2005)Google Scholar
  5. Korhonen, P., Wallenius, J.: Behavioural issues in MCDM: neglected research questions. J. Multi-Criteria Decis. Anal. 5, 178–182 (1996)CrossRefzbMATHGoogle Scholar
  6. Miettinen, K.: Nonlinear Multiobjective Optimization, 298 p. Kluwer, Boston (1999)Google Scholar
  7. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: Interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. Mäkinen, A., Kangas, A., Mehtätalo, L.: Correlations, distributions and trends of inventory errors and their effects on forest planning. Can. J. For. Res. 40(7), 1386–1396 (2010)CrossRefGoogle Scholar
  9. Kangas, J., Pukkala, T.: Operationalization of biological diversity as a decision objective in tactical planning. Can. J. For. Res. 26, 103–111 (1996)CrossRefGoogle Scholar
  10. Kleywegt, A., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Pantuso, G., Fagerholt, K., Wallace, S.W.: Solving hierarchical stochastic programs: application to the maritime fleet renewal problem. INFORMS J. Comput. 27(1), 89–102 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Pykäläinen, J.: Interactive use of multi-criteria decision analysis in forest planning. Dissertation. Faculty of Forestry, University of Joensuu (2000)Google Scholar
  13. Rasinmäki, J., Mäkinen, A., Kalliovirta, J.: SIMO: an adaptable simulation framework for multiscale forest resource data. Comput. Electron. Agric. 66(1), 76–84 (2009)CrossRefGoogle Scholar
  14. Tikkanen, O.P., Heinonen, T., Kouki, J., Matero, J.: Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: cost-effective measures for multi-species conservation. Biol. Conserv. 140(3), 359–372 (2007)CrossRefGoogle Scholar
  15. Tomppo, E.: Keski-Suomen metsäkeskuksen alueen metsävarat ja niiden kehitys 1967–96. Metsätieteen aikakauskirja 2B/1999, pp. 309–387 (1999). (in Finnish)Google Scholar
  16. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr. 8(2), 73–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Wierzbicki, A.P.: Reference point approaches. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pp. 9-1–9-39. Kluwer Academic Publishers, Boston (1999)Google Scholar
  18. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)CrossRefGoogle Scholar
  19. Duffie, D., Pan, J.: An overview of value at risk. J. Deriv. 4(3), 7–49 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Markus Hartikainen
    • 1
    Email author
  • Kyle Eyvindson
    • 2
  • Kaisa Miettinen
    • 1
  • Annika Kangas
    • 3
  1. 1.Faculty of Information TechnologyUniversity of JyvaskylaUniversity of JyvaskylaFinland
  2. 2.Department of Biological and Environmental ScienceUniversity of JyvaskylaUniversity of JyvaskylaFinland
  3. 3.Natural Resources Institute Finland (Luke), Economics and Society UnitJoensuuFinland

Personalised recommendations