Advertisement

Adaptive Targeting in Online Advertisement: Models Based on Relative Influence of Factors

  • Andrey PepelyshevEmail author
  • Yuri Staroselskiy
  • Anatoly Zhigljavsky
  • Roman Guchenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)

Abstract

We consider the problem of adaptive targeting for real-time bidding for internet advertisement. This problem involves making fast decisions on whether to show a given ad to a particular user. For demand partners, these decisions are based on information extracted from big data sets containing records of previous impressions, clicks and subsequent purchases. We discuss several criteria which allow us to assess the significance of different factors on probabilities of clicks and conversions. We then devise simple strategies that are based on the use of the most influential factors and compare their performance with strategies that are much more computationally demanding. To make the numerical comparison, we use real data collected by Crimtan in the process of running several recent ad campaigns.

Keywords

Online advertisement Real-time bidding Adaptive targeting Big data Conversion rate 

Notes

Acknowledgement

The paper is a result of collaboration of Crimtan, a provider of proprietary ad technology platform and University of Cardiff. Research of the third author was supported by the Russian Science Foundation, project No. 15-11-30022 “Global optimization, supercomputing computations, and application”.

References

  1. 1.
    Buja, A., Stuetzle, W., Shen, Y.: Loss functions for binary class probability estimation and classification: structure and applications. Working draft (2005)Google Scholar
  2. 2.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  3. 3.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jansen, B.J., Mullen, T.: Sponsored search: an overview of the concept, history, and technology. Int. J. Electron. Bus. 6(2), 114–131 (2008)CrossRefGoogle Scholar
  5. 5.
    He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Candela, J.Q.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1–9. ACM (2014)Google Scholar
  6. 6.
    Lima, C.F.L., de Assis, F.M., de Souza, C.P.: An empirical investigation of attribute selection techniques based on Shannon, Renyi and Tsallis entropies for network intrusion detection. Am. J. Intell. Syst. 2(5), 111–117 (2012)CrossRefGoogle Scholar
  7. 7.
    McMahan, H.B., Holt, G., Sculley, D., et al.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230. ACM (2013)Google Scholar
  8. 8.
    Pepelyshev, A., Staroselskiy, Y., Zhigljavsky, A.: Adaptive targeting for online advertisement. In: Pardalos, P., Pavone, M., Farinella, G.M., Cutello, V. (eds.) MOD 2015. LNCS, vol. 9432, pp. 240–251. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27926-8_21 CrossRefGoogle Scholar
  9. 9.
    Pepelyshev, A., Staroselskiy, Y., Zhigljavsky, A.: Adaptive designs for optimizing online advertisement campaigns. Stat. Pap. 57, 199–208 (2016)Google Scholar
  10. 10.
    Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 995–1000. IEEE (2010)Google Scholar
  11. 11.
    Ridgeway, G.: Generalized boosted models: a guide to the gbm package. Update 1.1 (2007)Google Scholar
  12. 12.
    Wang, J., Yuan, S., Shen, X., Seljan, S.: Real-time bidding: a new frontier of computational advertising research. In: CIKM Tutorial (2013)Google Scholar
  13. 13.
    Yang, S., Ghose, A.: Analyzing the relationship between organic and sponsored search advertising: positive, negative or zero interdependence? Mark. Sci. 29(4), 602–623 (2010)CrossRefGoogle Scholar
  14. 14.
  15. 15.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andrey Pepelyshev
    • 1
    Email author
  • Yuri Staroselskiy
    • 2
  • Anatoly Zhigljavsky
    • 1
    • 3
  • Roman Guchenko
    • 2
    • 4
  1. 1.Cardiff UniversityCardiffUK
  2. 2.CrimtanLondonUK
  3. 3.Lobachevskii State University of Nizhnii NovgorodNizhnii NovgorodRussia
  4. 4.St. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations