Current Interruption Basics

  • Kaveh NiayeshEmail author
  • Magne Runde
Part of the Power Systems book series (POWSYS)


In this chapter, the principle of current interruption in power switching devices with mechanically separating contacts is presented. The interruption is associated with initiation and extinction of a switching arc. First, a qualitative description of current interruption in power networks with various load types is given, and important parameters and concepts are introduced.


Switching Device Cathode Spot Current Zero Recovery Voltage Electric Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. 1.
    Chen FF (1984) Introduction to plasma physics and controlled fusion. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Bittencourt JA (2004) Fundamentals of plasma physics, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  3. 3.
    Friedman A, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis Books Inc, New York, p 18Google Scholar
  4. 4.
    Richardson OW (1921) The emission of electricity from hot bodies. Longmans Green Co., LondonGoogle Scholar
  5. 5.
    Fowler RH, Nordheim LW (1928) Electron emission in intense electric fields. Proc R Soc 119:173–181CrossRefzbMATHGoogle Scholar
  6. 6.
    Bhattacharya S, Ghatak KP (2012) Fowler-Nordheim field emission. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Murphy EL, Good RH (1956) Thermionic emission, field emission and the transition region. Phys Rev 102(6):1464–1472CrossRefGoogle Scholar
  8. 8.
    Lindmayer M (ed) (1987) Schaltgeräte: Grundlagen, Aufbau, Wirkungsweise, Springer, Berlin, p 7Google Scholar
  9. 9.
    Rieder W (1970) “Circuit breakers” In: IEEE spectrum, pp 36–43Google Scholar
  10. 10.
    Lindmayer M (ed) (1987) Schaltgeräte: Grundlagen, Aufbau, Wirkungsweise, Springer, Berlin, p 8Google Scholar
  11. 11.
    Friedman A, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis Books Inc, New YorkCrossRefGoogle Scholar
  12. 12.
    Lindmayer M (ed) (1987) Schaltgeräte: Grundlagen, Aufbau, Wirkungsweise, Springer, Berlin, p 9Google Scholar
  13. 13.
    Frind G (1960) Über das Abklingen von Lichtbögen: II. Prüfung der Theorie an experimentallen Untersuchungen. Z angewandte Physik 11:515–521Google Scholar
  14. 14.
    Slade PG (2008) Vacuum interrupters: theory, design and applications. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Ayrton H (1902) The mechanism of the electric arc. Philos Trans R Soc Lond Ser A, pp 299–335Google Scholar
  16. 16.
    Callen JD (2006) Fundamentals of plasma physics. University of WisconsinGoogle Scholar
  17. 17.
    Jenkes K, Heil B, Schnettler A (2002) Simulation of vacuum arcs in circuit breakers based on kinetic modelling. In: Proceedings of 20th international symposium on discharges and electrical insulation in vacuum, pp 634–637Google Scholar
  18. 18.
    Schade E, Shmelev L (2003) Numerical simulation of high current vacuum arcs with an external magnetic field. IEEE Trans Plasma Sci 31(5):890–901CrossRefGoogle Scholar
  19. 19.
    Keidar M, Beilis I (2013) Plasma engineering: applications from aerospace to bio- and nanotechnology. Elsevier Inc., AmsterdamGoogle Scholar
  20. 20.
    Cassie AM (1939) ‘Arc rupture and circuit severity: a new theory.’ Report no. 102, CIGREGoogle Scholar
  21. 21.
    Mayr O (1943) ‘Über die Theorie des Lichtbogens und seine Löschung’. ETZ-A 64:645–652Google Scholar
  22. 22.
    Habedank U (1988) On the mathematical description of arc behavior in the vicinity of current zero. etz Archiv 10:339–343Google Scholar
  23. 23.
    Guardado J et al (2005) An improved arc model before current zero based on the combined Mayr and Cassie arc models. IEEE Trans Power Deliv 20:138–142CrossRefGoogle Scholar
  24. 24.
    Shavemaker P, van der Sluis L (2000) An improved Mayr-Type arc model based on current-zero measurements. IEEE Trans Power Deliv 15:580–584CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Energy ResearchTrondheimNorway

Personalised recommendations