Skip to main content

Deep Learning and Classification

  • Chapter
  • First Online:
Artificial Intelligence in Label-free Microscopy

Abstract

As demonstrated in previous chapters, our TS-QPI system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. In this chapter, we use these biophysical measurements to form a hyperdimensional feature space in which supervised learning is performed for cell classification. We show that TS-QPI not only overcomes the throughput issue in cellular imaging, but also improves label-free diagnosis by integration of sensing multiple biophysical features. We also compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kling, J. (2012). Beyond counting tumor cells. Nature Biotechnology, 30(7), 578–580.

    Article  Google Scholar 

  2. Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., Capron, F., Franco, D., Pazzagli, M., Vekemans, M., et al. (2000). Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells. The American Journal of Pathology, 156(1), 57–63.

    Article  Google Scholar 

  3. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M. R., Kwak, E. L., Digumarthy, S., Muzikansky, A., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239.

    Article  Google Scholar 

  4. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data. Seattle: AMLBook.

    Google Scholar 

  5. Bishop, C. M., et al. (2006). Pattern recognition and machine learning (Vol. 4). New York: Springer.

    MATH  Google Scholar 

  6. Boddy, L., Morris, C. W., Wilkins, M. F., Tarran, G. A., & Burkill, P. H. (1994). Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry, 15(4), 283–293.

    Article  Google Scholar 

  7. Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

    Article  Google Scholar 

  8. Huang, J., & Ling, C. X. (2005). Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–310.

    Article  Google Scholar 

  9. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  10. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Article  Google Scholar 

  11. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 143(1), 29–36.

    Article  Google Scholar 

  12. Liu, Z., & Tan, M. (2008). Roc-based utility function maximization for feature selection and classification with applications to high-dimensional protease data. Biometrics, 64(4), 1155–1161.

    Article  MathSciNet  MATH  Google Scholar 

  13. Verrelst, H., Moreau, Y., Vandewalle, J., & Timmerman, D. (1998). Use of a multi-layer perceptron to predict malignancy in ovarian tumors. Advances in Neural Information Processing Systems, 10, 978–984.

    Google Scholar 

  14. Merchant, S. S., Kropat, J., Liu, B., Shaw, J., & Warakanont, J. (2012). Tag, you’re it! chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Current Opinion in Biotechnology, 23(3), 352–363.

    Article  Google Scholar 

  15. Zabawinski, C., Van Den Koornhuyse, N., D’Hulst, C., Schlichting, R., Giersch, C., Delrue, B., Lacroix, J.-M., Preiss, J.-M., & Ball, S. (2001). Starchless mutants of chlamydomonas reinhardtii lack the small subunit of a heterotetrameric adp-glucose pyrophosphorylase. Journal of Bacteriology, 183(3), 1069–1077.

    Article  Google Scholar 

  16. Work, V. H., Radakovits, R., Jinkerson, R. E., Meuser, J. E., Elliott, L. G., Vinyard, D. J., Laurens, L. M. L., Dismukes, G. C., & Posewitz, M. C. (2010). Increased lipid accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9(8), 1251–1261.

    Article  Google Scholar 

  17. Blaby, I. K., Glaesener, A. G., Mettler, T., Fitz-Gibbon, S. T., Gallaher, S. D., Liu, B., Boyle, N. R., Kropat, J., Stitt, M., Johnson, S., et al. (2013). Systems-level analysis of nitrogen starvation–induced modifications of carbon metabolism in a chlamydomonas reinhardtii starchless mutant. The Plant Cell Online, 25(11), 4305–4323.

    Article  Google Scholar 

  18. Laudon, M. (2015). Chlamydomonas Resource Center, University of Minnesota. Online.

    Google Scholar 

  19. Zhu, Y.-N., Ji, F., Liu, F., Tian, Z.-Q., Zhou, C., & Mahjoubfar, A. (2016). Data mining application in smart meter quality control. In Fuzzy system and data mining: Proceedings of FSDM 2015 (pp. 369–374). Amsterdam: IOS.

    Google Scholar 

  20. Suthar, M., Mahjoubfar, A., Seals, K., Lee, E. W., & Jalali, B. (2016). Diagnostic tool for pneumothorax. In 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM) (pp. 218–219). New York: IEEE.

    Chapter  Google Scholar 

  21. Zhu, Y., Jian, J., Wu, J., & Yang, L. (2013). Global optimization of non-convex hydro-thermal coordination based on semidefinite programming. IEEE Transactions on Power Systems, 28(4), 3720–3728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahjoubfar, A., Chen, C.L., Jalali, B. (2017). Deep Learning and Classification. In: Artificial Intelligence in Label-free Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-51448-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51448-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51447-5

  • Online ISBN: 978-3-319-51448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics