Skip to main content

Time Stretch Quantitative Phase Imaging

  • Chapter
  • First Online:
Artificial Intelligence in Label-free Microscopy

Abstract

Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7(2), 102–112.

    Article  Google Scholar 

  2. Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.

    Article  Google Scholar 

  3. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2013). Label-free high-throughput cell screening in flow. Biomedical Optics Express, 4(9), 1618–1625.

    Article  Google Scholar 

  4. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2014). Label-free high-throughput imaging flow cytometry. In SPIE LASE (pp. 89720F–89720F). Washington, DC: International Society for Optics and Photonics.

    Google Scholar 

  5. Mahjoubfar, A., Goda, K., Betts, G., & Jalali, B. (2013). Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A, 30(10), 2124–2132.

    Article  Google Scholar 

  6. Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M., Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.

    Article  Google Scholar 

  7. Kling, J. (2012). Beyond counting tumor cells. Nature Biotechnology, 30(7), 578–580.

    Article  Google Scholar 

  8. Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6(6), 451–464.

    Article  Google Scholar 

  9. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., et al. (2006). Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7(10), R100.

    Article  Google Scholar 

  10. Goda, K., Solli, D. R., Tsia, K. K., & Jalali, B. (2009). Theory of amplified dispersive fourier transformation. Physical Review A, 80(4), 043821.

    Article  Google Scholar 

  11. Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., Capron, F., Franco, D., Pazzagli, M., Vekemans, M., et al. (2000). Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells. The American Journal of Pathology, 156(1), 57–63.

    Article  Google Scholar 

  12. Ikeda, T., Popescu, G., Dasari, R. R., & Feld, M. S. (2005). Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 30(10), 1165–1167.

    Article  Google Scholar 

  13. Revel, J. P., Hoch, P., & Ho, D. (1974). Adhesion of culture cells to their substratum. Experimental Cell Research, 84(1), 207–218.

    Article  Google Scholar 

  14. Whur, P., Koppel, K., Urquhart, C. M., & Williams, D. C. (1977). Substrate retention of fractured retraction fibres during detachment of trypsinized bhk21 fibroblasts. Journal of Cell Science, 24(1), 265–273.

    Google Scholar 

  15. Shapiro, H. M. (2005). Practical flow cytometry. New York: Wiley.

    Google Scholar 

  16. Watson, J. V. (2004). Introduction to flow cytometry. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Perfetto, S. P., Chattopadhyay, P. K., & Roederer, M. (2004). Seventeen-colour flow cytometry: Unravelling the immune system. Nature Reviews Immunology, 4(8), 648–655.

    Article  Google Scholar 

  18. Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V., & Morrissey, P. (2007). Cellular image analysis and imaging by flow cytometry. Clinics in Laboratory Medicine, 27(3), 653–670.

    Article  Google Scholar 

  19. Basiji, D. A., & Ortyn, W. E. (2001). Imaging and analyzing parameters of small moving objects such as cells. US Patent 6211955.

    Google Scholar 

  20. Razavi, B. (1995). Principles of data conversion system design (Vol. 126). New York: IEEE.

    Google Scholar 

  21. Zanella, F., Lorens, J. B., & Link, W. (2010). High content screening: Seeing is believing. Trends in Biotechnology, 28(5), 237–245.

    Article  Google Scholar 

  22. Solli, D. R., Gupta, S., & Jalali, B. (2009). Optical phase recovery in the dispersive fourier transform. Applied Physics Letters, 95(23), 231108.

    Article  Google Scholar 

  23. Jalali, B., & Mahjoubfar, A. (2015). Tailoring wideband signals with a photonic hardware accelerator. Proceedings of the IEEE, 103(7), 1071–1086.

    Article  Google Scholar 

  24. Chen, C. L., Mahjoubfar, A., & Jalali, B. (2015). Optical data compression in time stretch imaging. PLoS One, 10(4), e0125106.

    Article  Google Scholar 

  25. Gires, O., Klein, C. A., & Baeuerle, P. A. (2009). On the abundance of epcam on cancer stem cells. Nature Reviews Cancer, 9(2), 143–143.

    Article  Google Scholar 

  26. Boddington, S. E., Sutton, E. J., Henning, T. D., Nedopil, A. J., Sennino, B., Kim, A., & Daldrup-Link, H. E. (2011). Labeling human mesenchymal stem cells with fluorescent contrast agents: The biological impact. Molecular Imaging and Biology, 13(1), 3–9.

    Article  Google Scholar 

  27. Popescu, G. (2011). Quantitative phase imaging of cells and tissues. New York: McGraw Hill.

    Google Scholar 

  28. Pham, H. V., Bhaduri, B., Tangella, K., Best-Popescu, C., & Popescu, G. (2013). Real time blood testing using quantitative phase imaging. PloS One, 8(2), e55676.

    Article  Google Scholar 

  29. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N., & Altan-Bonnet, G. (2008). Variability and robustness in t cell activation from regulated heterogeneity in protein levels. Science, 321(5892), 1081–1084.

    Article  Google Scholar 

  30. Friebel, M., Do, K., Hahn, A., Mu, G., et al. (1999). Optical properties of circulating human blood in the wavelength range 400–2500 nm. Journal of Biomedical Optics, 4(1), 36–46.

    Article  Google Scholar 

  31. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., & Sorger, P. K. (2009). Non-genetic origins of cell-to-cell variability in trail-induced apoptosis. Nature, 459(7245), 428–432.

    Article  Google Scholar 

  32. Knight, J. B., Vishwanath, A., Brody, J. P., & Austin, R. H. (1998). Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80(17), 3863.

    Article  Google Scholar 

  33. Lee, G.-B., Chang, C.-C., Huang, S.-B., & Yang, R.-J. (2006). The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering, 16(5), 1024.

    Article  Google Scholar 

  34. King, F. W. (2009). Hilbert transforms (Vol. 2). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  35. Buckley, B. W., Madni, A. M., & Jalali, B. (2013). Coherent time-stretch transformation for real-time capture of wideband signals. Optics Express, 21(18), 21618–21627.

    Article  Google Scholar 

  36. DeVore, P. T. S., Buckley, B. W., Asghari, M. H., Solli, D. R., & Jalali, B. (2014). Coherent time-stretch transform for near-field spectroscopy. IEEE Photonics Journal, 6, 3300107.

    Article  Google Scholar 

  37. Driscoll, M. K., Albanese, J. L., Xiong, Z.-M., Mailman, M., Losert, W., & Cao, K. (2012). Automated image analysis of nuclear shape: What can we learn from a prematurely aged cell? Aging (Albany NY), 4(2), 119

    Article  Google Scholar 

  38. Barer, R., Ross, K. F., & Tkaczyk, S. (1953). Refractometry of living cells. Nature, 171(4356), 720.

    Article  Google Scholar 

  39. Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L., Ljosa, V., Rueden, C., Eliceiri, K. W., & Carpenter, A. E. (2011). Improved structure, function and compatibility for cellprofiler: Modular high-throughput image analysis software. Bioinformatics, 27(8), 1179–1180.

    Article  Google Scholar 

  40. Spadinger, I., Poon, S. S. S., & Palcic, B. (1990). Effect of focus on cell detection and recognition by the cell analyzer. Cytometry, 11(4), 460–467.

    Article  Google Scholar 

  41. Adams, A. A., Okagbare, P. I., Feng, J., Hupert, M. L., Patterson, D., Göttert, J., McCarley, R. L., Nikitopoulos, D., Murphy, M. C., & Soper, S. A. (2008). Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. Journal of the American Chemical Society, 130(27), 8633–8641.

    Article  Google Scholar 

  42. Gossett, D. R., Weaver, W. M., Mach, A. J., Hur, S. C., Tse, H. T. K., Lee, W., Amini, H., & Di Carlo, D. (2010). Label-free cell separation and sorting in microfluidic systems. Analytical and Bioanalytical Chemistry, 397(8), 3249–3267.

    Article  Google Scholar 

  43. Maheshri, N., & O’Shea, E. K. (2007). Living with noisy genes: How cells function reliably with inherent variability in gene expression. Annual Review of Biophysics and Biomolecular Structure, 36, 413–434.

    Article  Google Scholar 

  44. Zangle, T. A., Teitell, M. A., & Reed, J. (2014). Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis. PloS One, 9(12), e115726.

    Article  Google Scholar 

  45. Johnston, I. G., Gaal, B., das Neves, R. P., Enver, T., Iborra, F. J., & Jones, N. S. (2012). Mitochondrial variability as a source of extrinsic cellular noise. PLoS Computational Biology, 8(3), e1002416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahjoubfar, A., Chen, C.L., Jalali, B. (2017). Time Stretch Quantitative Phase Imaging. In: Artificial Intelligence in Label-free Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-51448-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51448-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51447-5

  • Online ISBN: 978-3-319-51448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics