Skip to main content

Three-Dimensional Ultrafast Laser Scanner

  • Chapter
  • First Online:
Book cover Artificial Intelligence in Label-free Microscopy

Abstract

Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.

    Article  Google Scholar 

  2. Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S. H., & Jalali, B. (2011). High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 98(10), 101107.

    Article  Google Scholar 

  3. Goda, K., Mahjoubfar, A., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E., Malik, O., Chen, E., et al. (2012). Hybrid dispersion laser scanner. Scientific Reports, 2, 445.

    Article  Google Scholar 

  4. Conant, R. (2002). Micromachined mirrors (Vol. 12). Berlin: Springer.

    Google Scholar 

  5. Pape, D. R., Goutzoulis, A. P., & Kulakov, S. V. (1994). Design and fabrication of acousto-optic devices. New York: Dekker.

    Google Scholar 

  6. Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C. A., Laposata, M., Manley, S., Dasari, R. R., Badizadegan, K., & Feld, M. S. (2006). Optical measurement of cell membrane tension. Physical Review Letters, 97(21), 218101.

    Article  Google Scholar 

  7. Goda, K., Tsia, K. K., & Jalali, B. (2008). Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading. Applied Physics Letters, 93(13), 131109.

    Article  Google Scholar 

  8. Goda, K., Solli, D. R., Tsia, K. K., & Jalali, B. (2009). Theory of amplified dispersive fourier transformation. Physical Review A, 80(4), 043821.

    Article  Google Scholar 

  9. Marshall, G. F., & Stutz, G. E. (2011). Handbook of optical and laser scanning. Boca Raton, FL: CRC.

    Book  Google Scholar 

  10. Fujii, T., & Fukuchi, T. (2005). Laser remote sensing. Boca Raton, FL: CRC.

    Google Scholar 

  11. Dotson, C., Harlow, R., & Thompson, R. L. (2003). Fundamentals of dimensional metrology. Albany, NY: Thomson Learning.

    Google Scholar 

  12. Göbel, W., Kampa, B. M., & Helmchen, F. (2006). Imaging cellular network dynamics in three dimensions using fast 3d laser scanning. Nature Methods, 4(1), 73–79.

    Article  Google Scholar 

  13. Denk, W., Strickler, J. H., Webb, W. W., et al. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73–76.

    Article  Google Scholar 

  14. Weitkamp, C. (2006). Lidar: Range-resolved optical remote sensing of the atmosphere, 102. Springer Science & Business.

    Google Scholar 

  15. Schwarz, B. (2010). Mapping the world in 3d. Nature Photonics, 4(7), 429–430.

    Article  Google Scholar 

  16. Sinha, A. (2010). Vibration of mechanical systems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  17. Horn, B. (1986). Robot vision. Cambridge, MA: MIT.

    Google Scholar 

  18. Hoffman, A., Goetz, M., Vieth, M., Galle, P. R., Neurath, M. F., & Kiesslich, R. (2006). Confocal laser endomicroscopy: Technical status and current indications. Endoscopy, 38(12), 1275–1283.

    Article  Google Scholar 

  19. Vacca, G., Junnarkar, M. R., Goldblatt, N. R., Yee, M. W., Van Slyke, B. M., & Briese, T. C. (2009). Laser rastering flow cytometry: Fast cell counting and identification. In SPIE BiOS: Biomedical optics (pp. 71821T–71821T). Washington, DC: International Society for Optics and Photonics.

    Google Scholar 

  20. Yaqoob, Z., & Riza, N. A. (2004). Passive optics no-moving-parts barcode scanners. IEEE Photonics Technology Letters, 16(3), 954–956.

    Article  Google Scholar 

  21. Boudoux, C., Yun, S., Oh, W., White, W., Iftimia, N., Shishkov, M., Bouma, B., & Tearney, G. (2005). Rapid wavelength-swept spectrally encoded confocal microscopy. Optics Express, 13(20), 8214–8221.

    Article  Google Scholar 

  22. Kelkar, P. V., Coppinger, F., Bhushan, A. S., & Jalali, B. (1999). Time-domain optical sensing. Electronics Letters, 35(19), 1661–1662.

    Article  Google Scholar 

  23. Chou, J., Boyraz, O., Solli, D., & Jalali, B. (2007). Femtosecond real-time single-shot digitizer. Applied Physics Letters, 91(16), 161105–161105.

    Article  Google Scholar 

  24. Carlo, D. D. (2009). Inertial microfluidics. Lab on a Chip, 9(21), 3038–3046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahjoubfar, A., Chen, C.L., Jalali, B. (2017). Three-Dimensional Ultrafast Laser Scanner. In: Artificial Intelligence in Label-free Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-51448-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51448-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51447-5

  • Online ISBN: 978-3-319-51448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics