Growth Factor Regulation in the Nephrogenic Zone of the Developing Kidney

  • Leif Oxburgh
  • Sree Deepthi Muthukrishnan
  • Aaron Brown
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

New nephrons are induced by the interaction between mesenchymal progenitor cells and collecting duct tips, both of which are located at the outer edge of the kidney. This leading edge of active nephron induction is known as the nephrogenic zone. Cell populations found within this zone include collecting duct tips, cap mesenchyme cells, pretubular aggregates, nephrogenic zone interstitium, hemoendothelial progenitor cells, and macrophages. The close association of these dynamic progenitor cell compartments enables the intricate and synchronized patterning of the epithelial and the vascular components of the nephron. Understanding signaling interactions between the distinct progenitor cells of the nephrogenic zone are essential to determining the basis for new nephron formation, an important goal in regenerative medicine. A variety of technologies have been applied to define essential signaling pathways, including organ culture, mouse genetics, and primary cell culture. This chapter provides an overview of essential signaling pathways and discusses how these may be integrated.

Keywords

NPC Nephron progenitor Interstitial Stroma Collecting duct Nephrogenesis 

Notes

Acknowledgements

This work was supported by National Institutes of Diabetes and Digestive and Kidney Disease.

Grant R01DK078161 (L.O.). Literature included in this chapter represents a selection of reports from this vigorous research field, and we apologize to the many colleagues whose work we could not cite due to space constraints.

References

  1. Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, Wells CA, Little MH, Hume DA, Ricardo SD (2011) Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol 179(3):1243–1256. doi: 10.1016/j.ajpath.2011.05.037 (Epub 2011 Jul 14. PubMed PMID: 21762674; PubMed Central PMCID: PMC3157188)CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bagherie-Lachidan M, Reginensi A, Pan Q, Zaveri HP, Scott DA, Blencowe BJ, Helmbacher F, McNeill H (2015) Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142(15):2564–2573. doi: 10.1242/dev.122648 (Epub 2015 Jun 26. PubMed PMID: 26116661)CrossRefPubMedGoogle Scholar
  3. Baldelomar EJ, Charlton JR, Beeman SC, Hann BD, Cullen-McEwen L, Pearl VM, Bertram JF, Wu T, Zhang M, Bennett KM (2016) Phenotyping by magnetic resonance imaging nondestructively measures glomerular number and volume distribution in mice with and without nephron reduction. Kidney Int 89(2):498–505 (PubMed PMID: 26535998; PubMed Central PMCID: PMC4854807)CrossRefGoogle Scholar
  4. Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, Castellotti MC, Czernichow P, Pollard JW, Polak M (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76(2):359–367. doi: 10.1189/jlb.1103591 CrossRefPubMedGoogle Scholar
  5. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22(6):1191–1207. doi: 10.1016/j.devcel.2012.04.018 (PubMed PMID: 22698282; PubMed Central PMCID: PMC3376351)CrossRefPubMedPubMedCentralGoogle Scholar
  6. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8(2):229–239 (PubMed PMID: 15691764)CrossRefGoogle Scholar
  7. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, Costantini F, Mendelsohn C (2001) Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet 27(1):74–78 (PubMed PMID: 11138002)CrossRefGoogle Scholar
  8. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26(9):1529–1533. doi: 10.1007/s00467-011-1843-8 (Epub 2011 May 22. Review. PubMed PMID: 21604189)CrossRefPubMedGoogle Scholar
  9. Blank U, Brown A, Adams DC, Karolak MJ, Oxburgh L (2009) BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 136(21):3557–3566. doi: 10.1242/dev.036335 (Epub 2009 Sep 30. PubMed PMID: 19793891; PubMed Central PMCID: PMC2761106)CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bohnenpoll T, Bettenhausen E, Weiss AC, Foik AB, Trowe MO, Blank P, Airik R, Kispert A (2013) Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol 380(1):25–36. doi: 10.1016/j.ydbio.2013.04.036 (Epub 2013 May 15. PubMed PMID: 23685333)CrossRefPubMedGoogle Scholar
  11. Boivin FJ, Sarin S, Lim J, Javidan A, Svajger B, Khalili H, Bridgewater D (2015) Stromally expressed β-catenin modulates Wnt9b signaling in the ureteric epithelium. PLoS One 10(3):e0120347. doi: 10.1371/journal.pone.0120347 (eCollection 2015. PubMed PMID: 25803581; PubMed Central PMCID: PMC4372213)CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonegio RG, Beck LH, Kahlon RK, Lu W, Salant DJ (2011) The fate of Notch-deficient nephrogenic progenitor cells during metanephric kidney development. Kidney Int 79(10):1099–1112. doi: 10.1038/ki.2010.553 (Epub 2011 Jan 26. PubMed PMID: 21270765)CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boyle S, Shioda T, Perantoni AO, de Caestecker M (2007) Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 236(8):2321–2330 (PubMed PMID: 17615577)CrossRefGoogle Scholar
  14. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313(1):234–245 (Epub 2007 Oct 24. PubMed PMID: 18061157; PubMed Central PMCID: PMC2699557)CrossRefGoogle Scholar
  15. Boyle SC, Liu Z, Kopan R (2014) Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141(2):346–354. doi: 10.1242/dev.100271 (Epub 2013 Dec 18. PubMed PMID: 24353058; PubMed Central PMCID: PMC4074211)CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317(1):83–94. doi: 10.1016/j.ydbio.2008.02.010 (Epub 2008 Feb 21. PubMed PMID: 18358465)CrossRefPubMedGoogle Scholar
  17. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L (2011a) FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 138(23):5099–5112. doi: 10.1242/dev.065995 (Epub 2011 Oct 26. PubMed PMID: 22031548; PubMed Central PMCID: PMC3210493)CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brown AC, Blank U, Adams DC, Karolak MJ, Fetting JL, Hill BL, Oxburgh L (2011b) Isolation and culture of cells from the nephrogenic zone of the embryonic mouse kidney. J Vis Exp (50). pii: 2555. doi: 10.3791/2555 (PubMed PMID: 21540822; PubMed Central PMCID: PMC3169285)
  19. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci USA 110(12):4640–4645. doi: 10.1073/pnas.1213971110 (Epub 2013 Mar 4. PubMed PMID: 23487745; PubMed Central PMCID: PMC3607044)CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34(2):229–241. doi: 10.1016/j.devcel.2015.06.021 (Epub 2015 Jul 16. PubMed PMID: 26190145; PubMed Central PMCID: PMC4519427)CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burn SF, Webb A, Berry RL, Davies JA, Ferrer-Vaquer A, Hadjantonakis AK, Hastie ND, Hohenstein P (2011) Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 352(2):288–298. doi: 10.1016/j.ydbio.2011.01.033 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292 (PubMed PMID: 16054034)CrossRefGoogle Scholar
  23. Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R (2015) Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev Cell 35(1):49–62. doi: 10.1016/j.devcel.2015.09.009 (PubMed PMID: 26460946; PubMed Central PMCID: PMC4615609)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, McMahon AP, Kopan R (2007) Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134(4):801–811 (Epub 2007 Jan 17. PubMed PMID: 17229764; PubMed Central PMCID: PMC2613851)CrossRefGoogle Scholar
  25. Cohen PE, Chisholm O, Arceci RJ, Stanley ER, Pollard JW (1996) Absence of colony-stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice results in male fertility defects. Biol Reprod 55(2):310–317CrossRefGoogle Scholar
  26. Couillard M, Trudel M (2009) C-myc as a modulator of renal stem/progenitor cell population. Dev Dyn 238(2):405–414. doi: 10.1002/dvdy.21841 CrossRefPubMedGoogle Scholar
  27. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colonystimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120CrossRefGoogle Scholar
  28. Danovi SA, Rossi M, Gudmundsdottir K, Yuan M, Melino G, Basu S (2008) Yes-associated protein (YAP) is a critical mediator of c-Jun-dependent apoptosis. Cell Death Differ 15(1):217–219. doi: 10.1038/sj.cdd.4402226 CrossRefPubMedGoogle Scholar
  29. Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41(2):335–340 (PubMed PMID: 12574104)CrossRefGoogle Scholar
  30. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15(9):1035–1044. doi: 10.1038/ncb2828 (Epub 2013 Aug 25. Erratum in: Nat Cell Biol. 2013 Oct;15(10):1260. PubMed PMID: 23974041; PubMed Central PMCID: PMC3891676)CrossRefPubMedPubMedCentralGoogle Scholar
  31. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, Pachnis V (2001) Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15(18):2433–2444 (PubMed PMID: 11562352; PubMed Central PMCID: PMC312785)CrossRefGoogle Scholar
  32. Dekel B, Hochman E, Sanchez MJ, Maharshak N, Amariglio N, Green AR, Izraeli S (2004) Kidney, blood, and endothelium: developmental expression of stem cell leukemia during nephrogenesis. Kidney Int 65(4):1162–1169 (Erratum in: Kidney Int 2004 Jun;65(6):2465-6. PubMed PMID: 15086455)CrossRefGoogle Scholar
  33. Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, Lichman B, Zhu H, Ikenaga T, Ono F, Englert C, Cowan CA, Hukriede NA, Handin RI, Davidson AJ (2011) Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470(7332):95–100. doi: 10.1038/nature09669 (Epub 2011 Jan 26. PubMed PMID: 21270795; PubMed Central PMCID: PMC3170921)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ (2015) Development of the zebrafish mesonephros. Genesis 53(3-4):257–269. doi: 10.1002/dvg.22846 (Epub 2015 Mar 14. PubMed PMID: 25677367; PubMed Central PMCID: PMC4412820)CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208(3):349–362 (PubMed PMID: 9056639)CrossRefGoogle Scholar
  36. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111(5):707–716 (PubMed PMID: 12618525; PubMed Central PMCID: PMC151905)CrossRefGoogle Scholar
  37. Estaras C, Benner C, Jones KA (2015) SMADs and YAP compete to control elongation of beta-catenin:LEF-1-recruited RNAPII during hESC differentiation. Mol Cell 58(5):780–793. doi: 10.1016/j.molcel.2015.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L (2014) FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141(1):17–27. doi: 10.1242/dev.089078 (Epub 2013 Nov 27. PubMed PMID: 24284212; PubMed Central PMCID: PMC3865747)CrossRefPubMedPubMedCentralGoogle Scholar
  39. Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715. doi: 10.1038/ncomms9715 (PubMed PMID: 26493500; PubMed Central PMCID: PMC4620584)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA (2005) Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 132(24):5437–5449 (Epub 2005 Nov 16. PubMed PMID: 16291795)CrossRefGoogle Scholar
  41. Grobstein C (1953a) Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172(4384):869–870 (PubMed PMID: 13111219)CrossRefGoogle Scholar
  42. Grobstein C (1953b) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118(3054):52–55 (PubMed PMID: 13076182)CrossRefGoogle Scholar
  43. Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 10(2):424–440 (PubMed PMID: 13317909)CrossRefGoogle Scholar
  44. Harari-Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R, Pri-Chen S, Ozdemir DD, Lerenthal Y, Noiman T, Ben-Hur H, Vaknin Z, Schneider DF, Aronow BJ, Goldstein RS, Hohenstein P, Dekel B (2013) Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med 5(10):1556–1568. doi: 10.1002/emmm.201201584 (Epub 2013 Sep 2. PubMed PMID: 23996934; PubMed Central PMCID: PMC3799579)CrossRefPubMedPubMedCentralGoogle Scholar
  45. Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, Fajardo R, Feng JQ, Gluhak-Heinrich J, Harris MA, Abboud Werner S (2012) Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 50(1):42–53. doi: 10.1016/j.bone.2011.09.038 CrossRefPubMedGoogle Scholar
  46. Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310(2):379–387 (Epub 2007 Aug 16. PubMed PMID: 17826763; PubMed Central PMCID: PMC2075093)CrossRefGoogle Scholar
  47. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19(1):117–124. doi: 10.1681/ASN.2007010080 (PubMed PMID: 18178801; PubMed Central PMCID: PMC2391036)CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10(12):1467–1478 (PubMed PMID: 8666231)CrossRefGoogle Scholar
  49. Hu Y, Li M, Göthert JR, Gomez RA, Sequeira-Lopez ML (2015) Hemovascular progenitors in the kidney require sphingosine-1-phosphate receptor 1 for vascular development. J Am Soc Nephrol (pii: ASN.2015060610. [Epub ahead of print] PubMed PMID: 26534925)Google Scholar
  50. Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9(2):e88400. doi: 10.1371/journal.pone.0088400 (eCollection 2014. PubMed PMID: 24505489; PubMed Central PMCID: PMC3914987)CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, Selleri L, Herzlinger D (2015) Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development 142(15):2653–2664. doi: 10.1242/dev.124776 (Epub 2015 Jul 2. PubMed PMID: 26138478; PubMed Central PMCID: PMC4529034)CrossRefPubMedPubMedCentralGoogle Scholar
  52. Iglesias DM, Hueber PA, Chu L, Campbell R, Patenaude AM, Dziarmaga AJ, Quinlan J, Mohamed O, Dufort D, Goodyer PR (2007) Canonical WNT signaling during kidney development. Am J Phys Renal Phys 293(2):F494–F500 (Epub 2007 May 9. PubMed PMID: 17494089)Google Scholar
  53. Jones CV, Williams TM, Walker KA, Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G, Ricardo SD (2013) M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res 14:41. doi: 10.1186/1465-9921-14-41 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257. doi: 10.1242/dev.057646 (Epub 2011 Feb 24. PubMed PMID: 21350016; PubMed Central PMCID: PMC3050658)CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125(21):4225–4234 (PubMed PMID: 9753677)PubMedGoogle Scholar
  56. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181. doi: 10.1016/j.stem.2008.05.020 (PubMed PMID: 18682239; PubMed Central PMCID: PMC2561900)CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3(4):650–662. doi: 10.1016/j.stemcr.2014.08.008 (Epub 2014 Sep 18. PubMed PMID: 25358792; PubMed Central PMCID: PMC4223698)CrossRefGoogle Scholar
  58. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH (2016) Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest 126(5):1926–1938. doi: 10.1172/JCI83551 (Epub 2016 Apr 18. PubMed PMID: 27088801; PubMed Central PMCID: PMC4855934)CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25(6):1211–1225. doi: 10.1681/ASN.2013080831 (Epub 2013 Dec 19. PubMed PMID: 24357672; PubMed Central PMCID: PMC4033376)CrossRefPubMedGoogle Scholar
  60. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8(16):1875–1887 (PubMed PMID: 7958863)CrossRefGoogle Scholar
  61. Lin EE, Sequeira-Lopez ML, Gomez RA (2014) RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Phys Renal Phys 306(2):F249–F258. doi: 10.1152/ajprenal.00313.2013 (Epub 2013 Nov 13. PubMed PMID: 24226518; PubMed Central PMCID: PMC3920017)CrossRefGoogle Scholar
  62. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125(17):3313–3322 PubMed PMID: 9693135PubMedGoogle Scholar
  63. Lindström NO, Carragher NO, Hohenstein P (2015) The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through β-catenin signaling. Stem Cell Rep 4(4):551–560. doi: 10.1016/j.stemcr.2015.01.021 (Epub 2015 Mar 5. PubMed PMID: 25754203; PubMed Central PMCID: PMC4400645)CrossRefGoogle Scholar
  64. Little MH, Brennan J, Georgas K, Davies JA, Davidson DR, Baldock RA, Beverdam A, Bertram JF, Capel B, Chiu HS, Clements D, Cullen-McEwen L, Fleming J, Gilbert T, Herzlinger D, Houghton D, Kaufman MH, Kleymenova E, Koopman PA, Lewis AG, McMahon AP, Mendelsohn CL, Mitchell EK, Rumballe BA, Sweeney DE, Valerius MT, Yamada G, Yang Y, Yu J (2007) A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 7(6):680–699 (Epub 2007 Mar 23. Erratum in: Gene Expr Patterns. 2007 Dec;8(1):47-50. PubMed PMID: 17452023; PubMed Central PMCID: PMC2117077)CrossRefGoogle Scholar
  65. Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367. doi: 10.1038/ncomms2378 (PubMed PMID: 23340407; PubMed Central PMCID: PMC4447148)CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mao Y, Francis-West P, Irvine KD (2015) Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142(15):2574–2585. doi: 10.1242/dev.122630 (Epub 2015 Jun 26. PubMed PMID: 26116666; PubMed Central PMCID: PMC4529033)CrossRefPubMedPubMedCentralGoogle Scholar
  67. Marks SC Jr, Lane PW (1976) Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered 67(1):11–18CrossRefGoogle Scholar
  68. Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314(1):112–126. doi: 10.1016/j.ydbio.2007.11.016 (Epub 2007 Nov 28. PubMed PMID: 18177851; PubMed Central PMCID: PMC2699621)CrossRefPubMedGoogle Scholar
  69. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126(6):1139–1148 PubMed PMID: 10021334PubMedGoogle Scholar
  70. Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode-Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B (2009) Expression of stem cell markers in the human fetal kidney. PLoS One 4(8):e6709. doi: 10.1371/journal.pone.0006709 (Erratum in: PLoS One. 2011;6(3). doi:10.1371/annotation/5c42ca40-0a01-4e4e-94e3-ccaa2cc54fc6. PubMed PMID: 19696931; PubMed Central PMCID: PMC2725321)CrossRefPubMedPubMedCentralGoogle Scholar
  71. Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, Kessler JA (1996) CSF-1 deficiency in mice results in abnormal brain development. Development 122(9):2661–2672PubMedGoogle Scholar
  72. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6(1):e1000809. doi: 10.1371/journal.pgen.1000809 (PubMed PMID: 20084103; PubMed Central PMCID: PMC2797609)CrossRefPubMedPubMedCentralGoogle Scholar
  73. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382(6586):76–79 (PubMed PMID: 8657308)CrossRefGoogle Scholar
  74. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33(11):1193–1200 (PubMed PMID: 26458176; PubMed Central PMCID: PMC4747858)CrossRefGoogle Scholar
  75. Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324(1):88–98. doi: 10.1016/j.ydbio.2008.09.010 (Epub 2008 Sep 19. PubMed PMID: 18835385; PubMed Central PMCID: PMC2642884)CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333(2):312–323. doi: 10.1016/j.ydbio.2009.06.043 (Epub 2009 Jul 8. PubMed PMID: 19591821; PubMed Central PMCID: PMC2748313)CrossRefPubMedPubMedCentralGoogle Scholar
  77. Muthukrishnan SD, Yang X, Friesel R, Oxburgh L (2015) Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun 6:10027. doi: 10.1038/ncomms10027 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437(7056):281–285. doi: 10.1038/nature03914 CrossRefPubMedGoogle Scholar
  79. O’Brien LL, Guo Q, Lee Y, Tran T, Benazet JD, Whitney PH, Valouev A, McMahon AP (2016) Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143(4):595–608. doi: 10.1242/dev.127175 (PubMed PMID: 26884396; PubMed Central PMCID: PMC4760318)CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ohgushi M, Minaguchi M, Sasai Y (2015) Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17(4):448–461. doi: 10.1016/j.stem.2015.07.009 (Epub 2015 Aug 27. PubMed PMID: 26321201)CrossRefPubMedGoogle Scholar
  81. Ohmori T, Tanigawa S, Kaku Y, Fujimura S, Nishinakamura R (2015) Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci Rep 5:15676. doi: 10.1038/srep15676 (PubMed PMID: 26511275; PubMed Central PMCID: PMC4625151)CrossRefPubMedPubMedCentralGoogle Scholar
  82. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133(1):151–161 (Epub 2005 Nov 30. PubMed PMID: 16319116)CrossRefGoogle Scholar
  83. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119(4):1005–1017 (PubMed PMID: 8306871)PubMedGoogle Scholar
  84. Park JS, Ma W, O'Brien LL, Chung E, Guo JJ, Cheng JG, Valerius MT, McMahon JA, Wong WH, McMahon AP (2012) Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 23(3):637–651. doi: 10.1016/j.devcel.2012.07.008 (Epub 2012 Aug 16. PubMed PMID: 22902740; PubMed Central PMCID: PMC3892952)CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382(6586):73–76 (PubMed PMID: 8657307)CrossRefGoogle Scholar
  86. Pode-Shakked N, Pleniceanu O, Gershon R, Shukrun R, Kanter I, Bucris E, Pode-Shakked B, Tam G, Tam H, Caspi R, Pri-Chen S, Vax E, Katz G, Omer D, Harari-Steinberg O, Kalisky T, Dekel B (2016) Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci Rep 6:23562. doi: 10.1038/srep23562 (PubMed PMID: 27020553; PubMed Central PMCID: PMC4810363)CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pollard JW, Hennighausen L (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 91(20):9312–9316CrossRefGoogle Scholar
  88. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER (1991) A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 148(1):273–283CrossRefGoogle Scholar
  89. Qiao J, Sakurai H, Nigam SK (1999) Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci USA 96(13):7330–7335 (PubMed PMID: 10377414; PubMed Central PMCID: PMC22085)CrossRefGoogle Scholar
  90. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308(1):232–246 (Epub 2007 May 25. PubMed PMID: 17597598)CrossRefGoogle Scholar
  91. Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F (2016) Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol 14(2):e1002382. doi: 10.1371/journalpbio1002382 (eCollection 2016 Feb. PubMed PMID: 26894589; PubMed Central PMCID: PMC4760680)CrossRefPubMedPubMedCentralGoogle Scholar
  92. Robert B, St John PL, Hyink DP, Abrahamson DR (1996) Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Phys 271(3 Pt 2):F744–F753 (PubMed PMID: 8853438)Google Scholar
  93. Robert B, Zhao X, Abrahamson DR (2000) Coexpression of neuropilin-1, Flk1, and VEGF(164) in developing and mature mouse kidney glomeruli. Am J Physiol Renal Physiol 279(2):F275–F282 (Erratum in: Am J Physiol Renal Physiol 2001 Sep;281(3):section F following table of contents. PubMed PMID: 10919846)CrossRefGoogle Scholar
  94. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137(2):283–292. doi: 10.1242/dev.040287 (PubMed PMID: 20040494; PubMed Central PMCID: PMC2799161)CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124(20):4077–4087 (PubMed PMID: 9374404)PubMedGoogle Scholar
  96. Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS (2012) A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 7(9), e44869. doi: 10.1371/journal.pone.0044869 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382(6586):70–73 (PubMed PMID: 8657306)CrossRefGoogle Scholar
  98. Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge. ISBN-13: 9780521301527Google Scholar
  99. Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J (2006) c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 299(1):238–249 (Epub 2006 Jul 31. PubMed PMID: 16942767)CrossRefGoogle Scholar
  100. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367(6461):380–383 (PubMed PMID: 8114940)CrossRefGoogle Scholar
  101. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228 (Epub 2006 Oct 12. PubMed PMID: 17036046; PubMed Central PMCID: PMC1630416)CrossRefGoogle Scholar
  102. Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Phys Renal Phys 281(2):F345–F356 (PubMed PMID: 11457727)Google Scholar
  103. Sequeira-Lopez ML, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Phys Regul Integr Comp Phys 308(2):R138–R149. doi: 10.1152/ajpregu.00428.2014 (Epub 2014 Nov 26. PubMed PMID: 25427768; PubMed Central PMCID: PMC4297861)CrossRefGoogle Scholar
  104. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R (2015) Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol. pii: ASN.2015010096 ([Epub ahead of print] PubMed PMID: 26586691)Google Scholar
  105. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20(19):2390–2400. doi: 10.1038/sj.onc.1204383 CrossRefPubMedGoogle Scholar
  106. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29(2):188–202. doi: 10.1016/j.devcel.2014.02.017 (PubMed PMID: 24780737)CrossRefPubMedGoogle Scholar
  107. Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR (1995) Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol 268(1 Pt 2):F73–F81PubMedGoogle Scholar
  108. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8(16):1888–1896 (PubMed PMID: 7958864)CrossRefGoogle Scholar
  109. Sözen MA, Armstrong JD, Yang M, Kaiser K, Dow JA (1997) Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc Natl Acad Sci USA 94(10):5207–5212 (PubMed PMID: 9144216; PubMed Central PMCID: PMC24657)CrossRefGoogle Scholar
  110. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colonystimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91(12):5592–5596CrossRefGoogle Scholar
  111. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67. doi: 10.1016/j.stem.2013.11.010 (Epub 2013 Dec 12. PubMed PMID: 24332837)CrossRefPubMedGoogle Scholar
  112. Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126. doi: 10.1038/ncb2894 (Epub 2013 Dec 15. PubMed PMID: 24335651)CrossRefPubMedGoogle Scholar
  113. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568. doi: 10.1038/nature15695 (Epub 2015 Oct 7. PubMed PMID: 26444236)CrossRefPubMedGoogle Scholar
  114. Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, Yamaguchi TP, Rodriguez LG, Perantoni AO (2011) Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol 352(1):58–69. doi: 10.1016/j.ydbio.2011.01.012 (Epub 2011 Jan 21. PubMed PMID: 21256838; PubMed Central PMCID: PMC3049843)CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tanigawa S, Sharma N, Hall MD, Nishinakamura R, Perantoni AO (2015) Preferential propagation of competent SIX2+ nephronic progenitors by LIF/ROCKi treatment of the metanephric mesenchyme. Stem Cell Rep 5(3):435–447. doi: 10.1016/j.stemcr.2015.07.015 (Epub 2015 Aug 28. PubMed PMID: 26321142; PubMed Central PMCID: PMC4618653)CrossRefGoogle Scholar
  116. Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S (2010) JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis 1, e29. doi: 10.1038/cddis.2010.7 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Toualbi K, Guller MC, Mauriz JL, Labalette C, Buendia MA, Mauviel A, Bernuau D (2007) Physical and functional cooperation between AP-1 and beta-catenin for the regulation of TCF-dependent genes. Oncogene 26(24):3492–3502. doi: 10.1038/sj.onc.1210133 CrossRefPubMedGoogle Scholar
  118. Tufró A (2000) VEGF spatially directs angiogenesis during metanephric development in vitro. Dev Biol 227(2):558–566 (PubMed PMID: 11071774)CrossRefGoogle Scholar
  119. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93(20):10657–10661 (PubMed PMID: 8855235; PubMed Central PMCID: PMC38210)CrossRefGoogle Scholar
  120. Vize PD, Smith HW (2004) A homeric view of kidney evolution: a reprint of H.W. Smith’s classic essay with a new introduction. Evolution of the kidney. 1943. Anat Rec A Discov Mol Cell Evol Biol 277(2):344–354 (PubMed PMID: 15052662)CrossRefGoogle Scholar
  121. Walker KA, Sims-Lucas S, Bates CM (2016) Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol 31(6):885–895. doi: 10.1007/s00467-015-3151-1 (Epub 2015 Aug 21. Review. PubMed PMID: 26293980; PubMed Central PMCID: PMC4761523)CrossRefPubMedGoogle Scholar
  122. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686 (Epub 2007 May 27. PubMed PMID: 17529971)CrossRefGoogle Scholar
  123. Wiktor-Jedrzejczak W, Urbanowska E, Szperl M (1994) Granulocyte-macrophage colony-stimulating factor corrects macrophage deficiencies, but not osteopetrosis, in the colony-stimulating factor-1-deficient op/op mouse. Endocrinology 134(4):1932–1935. doi: 10.1210/endo.134.4.8137761 CrossRefPubMedGoogle Scholar
  124. Yao M, Wang Y, Zhang P, Chen H, Xu Z, Jiao J, Yuan Z (2014) BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci 34(36):12039–12048. doi: 10.1523/JNEUROSCI.0486-14.2014 (PubMed PMID: 25186749)CrossRefPubMedGoogle Scholar
  125. Yochum GS, Cleland R, Goodman RH (2008) A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol Cell Biol 28(24):7368–7379. doi: 10.1128/mcb.00744-08 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136(1):161–171. doi: 10.1242/dev.022087 (PubMed PMID: 19060336; PubMed Central PMCID: PMC2685965)CrossRefPubMedGoogle Scholar
  127. Yuri S, Nishikawa M, Yanagawa N, Jo OD, Yanagawa N (2015) Maintenance of mouse nephron progenitor cells in aggregates with gamma-secretase inhibitor. PLoS One 10(6):e0129242. doi: 10.1371/journal.pone.0129242 (eCollection 2015. PubMed PMID: 26075891; PubMed Central PMCID: PMC4468097)CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227. doi: 10.1038/ncb3216 CrossRefPubMedGoogle Scholar
  129. Zubkov VS, Combes AN, Short KM, Lefevre J, Hamilton NA, Smyth IM, Little MH, Byrne HM (2015) A spatially-averaged mathematical model of kidney branching morphogenesis. J Theor Biol 379:24–37. doi: 10.1016/j.jtbi.2015.04.015 (Epub 2015 Apr 24. PubMed PMID: 25913880)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Leif Oxburgh
    • 1
  • Sree Deepthi Muthukrishnan
    • 1
  • Aaron Brown
    • 1
  1. 1.Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUSA

Personalised recommendations