Zebrafish Pronephros Development

  • Richard W. Naylor
  • Sarah S. Qubisi
  • Alan J. Davidson
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water—processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

References

  1. Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207PubMedCrossRefGoogle Scholar
  2. Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S (1998) Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98:157–163PubMedCrossRefGoogle Scholar
  3. Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, Clark KJ, Neff KI, Nelson KE, Bill BR, Schimmenti LA (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793–804PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533PubMedCrossRefGoogle Scholar
  5. Bollig F, Mehringer R, Perner B, Hartung C, Schafer M, Schartl M, Volff JN, Winkler C, Englert C (2006) Identification and comparative expression analysis of a second wt1 gene in zebrafish. Dev Dyn 235:554–561PubMedCrossRefGoogle Scholar
  6. Bollig F, Perner B, Besenbeck B, Kothe S, Ebert C, Taudien S, Englert C (2009) A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development 136:2883–2892PubMedCrossRefGoogle Scholar
  7. Bouchard M, Pfeffer P, Busslinger M (2000) Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127:3703–3713PubMedGoogle Scholar
  8. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brooks ER, Wallingford JB (2014) Multiciliated cells. Curr Biol 24:R973–R982PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burckle C, Gaude HM, Vesque C, Silbermann F, Salomon R, Jeanpierre C, Antignac C, Saunier S, Schneider-Maunoury S (2011) Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 20:2611–2627PubMedCrossRefGoogle Scholar
  11. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRefGoogle Scholar
  12. Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59PubMedCrossRefGoogle Scholar
  13. Chen YH, Chang CF, Lai YY, Sun CY, Ding YJ, Tsai JN (2015) von Hippel-Lindau gene plays a role during zebrafish pronephros development. In vitro cellular and developmental biology. Animal 51:1023–1032Google Scholar
  14. Cheng CN, Wingert RA (2015) Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Dev Biol 399:100–116PubMedCrossRefGoogle Scholar
  15. Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S (2014) Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci 127:1476–1486PubMedPubMedCentralCrossRefGoogle Scholar
  16. Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23:7233–7246PubMedCrossRefGoogle Scholar
  17. de Jong JL, Davidson AJ, Wang Y, Palis J, Opara P, Pugach E, Daley GQ, Zon LI (2010) Interaction of retinoic acid and scl controls primitive blood development. Blood 116:201–209PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126:925–941PubMedPubMedCentralCrossRefGoogle Scholar
  19. Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ (2015) Development of the zebrafish mesonephros. Genesis 53:257–269PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130:1837–1851PubMedCrossRefGoogle Scholar
  21. Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM (2001) Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 194:13–27PubMedPubMedCentralCrossRefGoogle Scholar
  22. Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304PubMedCrossRefGoogle Scholar
  23. Drummond IA, Davidson AJ (2010) Zebrafish kidney development. Methods Cell Biol 100:233–260PubMedCrossRefGoogle Scholar
  24. Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667PubMedGoogle Scholar
  25. Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128:185–197PubMedCrossRefGoogle Scholar
  26. Fauny JD, Thisse B, Thisse C (2009) The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136:3811–3819PubMedCrossRefGoogle Scholar
  27. Gao B (2012) Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol 101:263–295PubMedCrossRefGoogle Scholar
  28. Gerlach GF, Wingert RA (2014) Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev Biol 396:183–200PubMedPubMedCentralCrossRefGoogle Scholar
  29. Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, Sordino P, Kuchler AM, Schulte-Merker S, Geisler R, Holder N, Wilson SW, Brand M (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development 129:2851–2865PubMedGoogle Scholar
  30. Gu W, Monteiro R, Zuo J, Simoes FC, Martella A, Andrieu-Soler C, Grosveld F, Sauka-Spengler T, Patient R (2015) A novel TGFbeta modulator that uncouples R-Smad/I-Smad-mediated negative feedback from R-Smad/ligand-driven positive feedback. PLoS Biol 13:e1002051PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666PubMedPubMedCentralCrossRefGoogle Scholar
  32. Haase VH (2006) The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int 69:1302–1307PubMedCrossRefGoogle Scholar
  33. Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7:e1000101PubMedPubMedCentralCrossRefGoogle Scholar
  34. He L, Xu W, Jing Y, Wu M, Song S, Cao Y, Mei C (2015) Yes-associated protein (Yap) is necessary for ciliogenesis and morphogenesis during pronephros development in zebrafish (Danio Rerio). Int J Biol Sci 11:935–947PubMedPubMedCentralCrossRefGoogle Scholar
  35. Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyrylainen R, Shan J, Vainio S, Umbhauer M, Cereghini S (2013) HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development 140:873–885PubMedCrossRefGoogle Scholar
  36. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA 104:1631–1636PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu N, Yost HJ, Clark EB (2001) Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec 264:1–12PubMedCrossRefGoogle Scholar
  39. Hyvärinen J, Parikka M, Sormunen R, Rämet M, Tryggvason K, Kivirikko KI, Myllyharju J, Koivunen P (2010) Deficiency of a transmembrane prolyl 4-hydroxylase in the zebrafish leads to basement membrane defects and compromised kidney function. J Biol Chem 285:42023–42032PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ichimura K, Bubenshchikova E, Powell R, Fukuyo Y, Nakamura T, Tran U, Oda S, Tanaka M, Wessely O, Kurihara H (2012) A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS One 7(9):e45286PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ichimura K, Powell R, Nakamura T, Kurihara H, Sakai T, Obara T (2013) Podocalyxin regulates pronephric glomerular development in zebrafish. Phys Rep 1Google Scholar
  42. Ikenaga T, Urban JM, Gebhart N, Hatta K, Kawakami K, Ono F (2011) Formation of the spinal network in zebrafish determined by domain-specific pax genes. J Comp Neurol 519:1562–1579PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234PubMedCrossRefGoogle Scholar
  44. James RG, Schultheiss TM (2003) Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 253:109–124PubMedCrossRefGoogle Scholar
  45. James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125PubMedCrossRefGoogle Scholar
  46. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004PubMedCrossRefGoogle Scholar
  47. Jesuthasan S, Stahle U (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Biol 7:31–42PubMedCrossRefGoogle Scholar
  48. Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T, Katsanis N, Wallingford JB (2010) Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science (New York, NY) 329:1337–1340CrossRefGoogle Scholar
  49. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  50. Kozlowski DJ, Murakami T, Ho RK, Weinberg ES (1997) Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol 75:551–562PubMedCrossRefGoogle Scholar
  51. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005a) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921PubMedCrossRefGoogle Scholar
  52. Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005b) Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kudoh T, Tsang M, Hukriede NA, Chen X, Dedekian M, Clarke CJ, Kiang A, Schultz S, Epstein JA, Toyama R, Dawid IB (2001) A gene expression screen in zebrafish embryogenesis. zfin.org PubMedCrossRefGoogle Scholar
  54. Kumano G, Smith WC (2002) Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 225:409–421PubMedCrossRefGoogle Scholar
  55. Kyuno J, Masse K, Jones EA (2008) A functional screen for genes involved in Xenopus pronephros development. Mech Dev 125:571–586PubMedCrossRefGoogle Scholar
  56. Lane MC, Sheets MD (2002a) Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps. Dev Biol 248:52–67PubMedCrossRefGoogle Scholar
  57. Lane MC, Sheets MD (2002b) Rethinking axial patterning in amphibians. Dev Dyn 225:434–447PubMedCrossRefGoogle Scholar
  58. Lane MC, Sheets MD (2006) Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development. Dev Biol 296:12–28PubMedCrossRefGoogle Scholar
  59. Langdon YG, Mullins MC (2011) Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45:357–377PubMedCrossRefGoogle Scholar
  60. Li Y, Cheng CN, Verdun VA, Wingert RA (2014) Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Dev Biol 386:111–122PubMedCrossRefGoogle Scholar
  61. Liu Y, Pathak N, Kramer-Zucker A, Drummond IA (2007) Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134:1111–1122PubMedCrossRefGoogle Scholar
  62. Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 12:363–372PubMedCrossRefGoogle Scholar
  63. Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet 3:e18PubMedPubMedCentralCrossRefGoogle Scholar
  64. Majumdar A, Drummond IA (1999) Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet 24:220–229PubMedCrossRefGoogle Scholar
  65. Majumdar A, Drummond IA (2000) The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol 222:147–157PubMedCrossRefGoogle Scholar
  66. Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098PubMedGoogle Scholar
  67. Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Ren Physiol 294:F542–F553CrossRefGoogle Scholar
  68. Marra AN, Wingert RA (2016) Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development. Dev Biol 411:231–245PubMedPubMedCentralCrossRefGoogle Scholar
  69. Massa F, Garbay S, Bouvier R, Sugitani Y, Noda T, Gubler MC, Heidet L, Pontoglio M, Fischer E (2013) Hepatocyte nuclear factor 1beta controls nephron tubular development. Development 140:886–896PubMedCrossRefGoogle Scholar
  70. Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109PubMedCrossRefGoogle Scholar
  71. Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA (2008) odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135:3355–3367PubMedPubMedCentralCrossRefGoogle Scholar
  72. Naylor RW, Przepiorski A, Ren Q, Yu J, Davidson AJ (2013) HNF1beta is essential for nephron segmentation during nephrogenesis. J Am Soc Nephrol 24:77–87PubMedCrossRefGoogle Scholar
  73. Neto A, Mercader N, Gomez-Skarmeta JL (2012) The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development 139:301–311PubMedCrossRefGoogle Scholar
  74. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434PubMedCrossRefGoogle Scholar
  75. Obara T, Mangos S, Liu Y, Zhao J, Wiessner S, Kramer-Zucker AG, Olale F, Schier AF, Drummond IA (2006) Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol 17:2706–2718PubMedPubMedCentralCrossRefGoogle Scholar
  76. Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108PubMedGoogle Scholar
  77. O’Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ (2011) Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 358:318–330PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ott E, Wendik B, Srivastava M, Pacho F, Tochterle S, Salvenmoser W, Meyer D (2015) Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm. Dev Biol 411:101–114PubMedCrossRefGoogle Scholar
  79. Pathak N, Obara T, Mangos S, Liu Y, Drummond IA (2007) The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell 18:4353–4364PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pathak N, Austin-Tse CA, Liu Y, Vasilyev A, Drummond IA (2014) Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Mol Biol Cell 25:1836–1844PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pazour GJ (2004) Comparative genomics: prediction of the ciliary and basal body proteome. Curr Biol 14:R575–R577PubMedCrossRefGoogle Scholar
  82. Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96PubMedCrossRefGoogle Scholar
  83. Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074PubMedGoogle Scholar
  84. Pham VN, Roman BL, Weinstein BM (2001) Isolation and expression analysis of three zebrafish angiopoietin genes. Dev Dyn 221:470–474PubMedCrossRefGoogle Scholar
  85. Pyati UJ, Cooper MS, Davidson AJ, Nechiporuk A, Kimelman D (2006) Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133:2275–2284PubMedCrossRefGoogle Scholar
  86. Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078PubMedGoogle Scholar
  88. Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC (2001) Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell 1:265–275PubMedCrossRefGoogle Scholar
  89. Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875PubMedGoogle Scholar
  90. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400PubMedCrossRefGoogle Scholar
  91. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science (New York, NY) 311:629–632CrossRefGoogle Scholar
  92. Schnabel E, Dekan G, Miettinen A, Farquhar MG (1989) Biogenesis of podocalyxin – the major glomerular sialoglycoprotein – in the newborn rat kidney. Eur J Cell Biol 48:313–326PubMedGoogle Scholar
  93. Schnerwitzki D, Perner B, Hoppe B, Pietsch S, Mehringer R, Hänel F, Englert C (2014) Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Dev Biol 393:24–32PubMedCrossRefGoogle Scholar
  94. Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD, Duffield JS (2012) Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol 23:868–883PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31:106–110PubMedCrossRefGoogle Scholar
  96. Serluca FC, Fishman MC (2001) Pre-pattern in the pronephric kidney field of zebrafish. Development 128:2233–2241PubMedGoogle Scholar
  97. Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12:492–497PubMedCrossRefGoogle Scholar
  98. Seufert DW, Brennan HC, DeGuire J, Jones EA, Vize PD (1999) Developmental basis of pronephric defects in Xenopus body plan phenotypes. Dev Biol 215:233–242PubMedCrossRefGoogle Scholar
  99. Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366PubMedCrossRefGoogle Scholar
  100. Singhal PC, Sagar S, Garg P (1996) Simulated glomerular pressure modulates mesangial cell 72 kDa metalloproteinase activity. Connect Tissue Res 33:257–263PubMedCrossRefGoogle Scholar
  101. Skouloudaki K, Puetz M, Simons M, Courbard JR, Boehlke C, Hartleben B, Engel C, Moeller MJ, Englert C, Bollig F, Schafer T, Ramachandran H, Mlodzik M, Huber TB, Kuehn EW, Kim E, Kramer-Zucker A, Walz G (2009) Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc Natl Acad Sci USA 106:8579–8584PubMedPubMedCentralCrossRefGoogle Scholar
  102. Slanchev K, Putz M, Schmitt A, Kramer-Zucker A, Walz G (2011) Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum Mol Genet 20:3119–3128PubMedCrossRefGoogle Scholar
  103. Spemann H, Mangold H (1923) Induction of embryonic primordia by implantation of organizers from a different species. Int J Dev Biol 45:13–38Google Scholar
  104. Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, Burdine RD (2008) Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev Biol 314:261–275PubMedCrossRefGoogle Scholar
  105. Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093PubMedCrossRefGoogle Scholar
  107. Takeda T, Go WY, Orlando RA, Farquhar MG (2000) Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11:3219–3232PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gomez-Skarmeta JL (2007) Odd-skipped genes encode repressors that control kidney development. Dev Biol 301:518–531PubMedCrossRefGoogle Scholar
  109. Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission. http://zfin.org
  110. Thisse C, Thisse B (2005) High throughput expression analysis of ZF-models consortium clones. ZFIN Direct Data Submission. http://zfin.org
  111. Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN Direct Data Submission. http://zfin.org
  112. Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27:6383–6395PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tomar R, Mudumana SP, Pathak N, Hukreide NA, Drummond IA (2014) osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol ASN. 2013121327Google Scholar
  114. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMedGoogle Scholar
  115. Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703–716PubMedCrossRefGoogle Scholar
  116. Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108–119PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA (2009) Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 7:e9PubMedCrossRefGoogle Scholar
  118. Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA (2012) Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLoS One 7:e39992PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594PubMedCrossRefGoogle Scholar
  120. Wanner A, Salathe M, O'Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902PubMedCrossRefGoogle Scholar
  121. Warga RM, Nusslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838PubMedGoogle Scholar
  122. Warga RM, Mueller RL, Ho RK, Kane DA (2013) Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev Biol 383:75–89PubMedPubMedCentralCrossRefGoogle Scholar
  123. Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ (2014) An alpha-smooth muscle actin (acta2/alphasma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 9:e90590PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wingert R, Davidson A (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127PubMedCrossRefGoogle Scholar
  125. Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027PubMedCrossRefGoogle Scholar
  126. Wingert RA, Selleck R, Yu J, Song H-D, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938PubMedCrossRefGoogle Scholar
  127. Woo K, Fraser SE (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121:2595–2609PubMedGoogle Scholar
  128. Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C (2014) Construction of a vertebrate embryo from two opposing morphogen gradients. Science (New York, NY) 344:87–89CrossRefGoogle Scholar
  129. Yasuda T, Kondo S, Homma T, Harris RC (1996) Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98:1991–2000PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang Q, Liu Q, Austin C, Drummond I, Pierce EA (2012) Knockdown of ttc26 disrupts ciliogenesis of the photoreceptor cells and the pronephros in zebrafish. Mol Biol Cell 23:3069–3078PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhang J, Yuan S, Vasilyev A, Amin Arnaout M (2015) The transcriptional coactivator Taz regulates proximodistal patterning of the pronephric tubule in zebrafish. Mech Dev 138:328–335PubMedCrossRefGoogle Scholar
  132. Zust B, Dixon KE (1975) The effect of u.v. irradiation of the vegetal pole of Xenopus laevis eggs on the presumptive primordial germ cells. J Embryol Exp Morpholog 34:209–220Google Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Richard W. Naylor
    • 1
  • Sarah S. Qubisi
    • 1
  • Alan J. Davidson
    • 1
  1. 1.Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations