Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease

  • Naveen Kumar Gautam
  • Puja Verma
  • Madhu G. Tapadia
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.

References

  1. Agarwal SK, Gupta A (2008) Aquaporins: the renal water channels. Indian J Nephrol 18(3):95–100PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ainsworth C et al (2000) Coordinating cell fate and morphogenesis in Drosophila renal tubules. Philos Trans R Soc Lond 355:931–937CrossRefGoogle Scholar
  3. Allam R et al (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23(8):1375–1388PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arikyants N et al (2007) Xanthinuria type I: a rare cause of urolithiasis. Pediatr Nephrol 22:310–314PubMedCrossRefGoogle Scholar
  5. Aronson PS, Sacktor B (1975) The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem 250:6032–6039PubMedGoogle Scholar
  6. Artero RD et al (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128:4251–4264PubMedGoogle Scholar
  7. Bagga HS et al (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCrossRefGoogle Scholar
  8. Balda MS, Matter K (1998) Tight junctions. J Cell Sci 111:541–547PubMedGoogle Scholar
  9. Betz B, Conway B (2016) An update on the use of animal models in diabetic nephropathy research. Curr Diab Rep 16:18PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beyenbach KW et al (2010) The developmental, molecular, and transport biology of Malpighian tubules. Annu Rev Entomol 55:351–374PubMedCrossRefGoogle Scholar
  11. Bonse A (1967) Studies on the chemical nature and formation of the urinary conglomerate in the Malpighian vessels of the rosy mutant of Drosophila melanogaster. Z Naturforsch B 22:1027–1029PubMedCrossRefGoogle Scholar
  12. Breljak D et al (2016) Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron. Am J Physiol Renal Physiol 311(1):F227–F238PubMedCrossRefGoogle Scholar
  13. Browne A, O’Donnell MJ (2016) Segment-specific Ca2+ transport by isolated Malpighian tubules of Drosophila melanogaster: a comparison of larval and adult stages. J Insect Physiol (in press)PubMedCrossRefGoogle Scholar
  14. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184PubMedCrossRefGoogle Scholar
  15. Cabrero P et al (2002) The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol 205:3799–3807PubMedGoogle Scholar
  16. Cannell E et al (2016) The corticotrophin releasing factor like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 9781(16):30020–30021 (S0196)Google Scholar
  17. Cantaluppi V et al (2015) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 30(3):410–422PubMedCrossRefGoogle Scholar
  18. Centers for Disease Control and Prevention (2014) National diabetes statistics report: estimates of diabetes and its Burden in the United States, 2014. U.S. Department of Health and Human Services, Atlanta, GAGoogle Scholar
  19. Chen et al (2011) Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney Int 80:369–377PubMedCrossRefGoogle Scholar
  20. Cherbas L et al (2003) EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130:271–284PubMedCrossRefGoogle Scholar
  21. Chi T et al (2015) A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 10(5):e0124150PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chintapalli VR et al (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720PubMedCrossRefGoogle Scholar
  23. Cho E, Dressler G (2003) Formation and development of nephrons. In: Vize P, Woolf A, Bard J (eds) The kidney: from normal development to congenital disease. Academic, San Diego, pp 195–210CrossRefGoogle Scholar
  24. Coast GM et al (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 204:1795–1804PubMedGoogle Scholar
  25. Costanzo LS (1984) Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am J Phys 246:F937–F945Google Scholar
  26. Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9(9):1627–1638PubMedCrossRefGoogle Scholar
  27. Davies SA, Dow JA (2009) Modulation of epithelial innate immunity by autocrine production of nitric oxide. Gen Comp Endocrinol 162(1):113–121PubMedCrossRefGoogle Scholar
  28. Davies MB et al (2005) Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development. Dev Biol 282:385–396CrossRefGoogle Scholar
  29. Davies SA et al (2012) Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule. J Insect Physiol 58(4):488–497PubMedCrossRefGoogle Scholar
  30. Day JP et al (2008) Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane VATPase of Metazoa. J Cell Sci 121:2612–2619PubMedCrossRefGoogle Scholar
  31. Delanoue R et al (2016) Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 353(6307):1553–1556PubMedCrossRefGoogle Scholar
  32. Denholm B et al (2003) Dual origin of the renal tubules in Drosophila: mesodermal cells integrate and polarize to establish secretory function. Curr Biol 13:1052–1057PubMedCrossRefGoogle Scholar
  33. Denholm B et al (2013) The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 40(5):1100–1110CrossRefGoogle Scholar
  34. Dorwart MR et al (2008) The solute carrier 26 family of proteins in epithelial ion transport. Physiology 23:104PubMedCrossRefGoogle Scholar
  35. Dow JAT (2009) Insights into the Malpighian tubule from functional genomics. J Exp Biol 212:435–445PubMedCrossRefGoogle Scholar
  36. Dow JAT, Davies SA (2003) Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 83:687–729PubMedCrossRefGoogle Scholar
  37. Dow JAT, Romero MF (2010) Drosophila provides rapid modeling of renal development, function, and disease. Am J Physiol Renal Physiol 299(6):F1237–F1244PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dow JAT et al (1994) The Malpighian tubules of Drosophila melanogaster, a novel phenotype for studies of fluid secretion and its control. J Exp Biol 197:421–428PubMedGoogle Scholar
  39. Dube KA, McDonald DG, O’Donnell MJ (2000) Calcium transport by isolated anterior and posterior Malpighian tubules of Drosophila melanogaster, roles of sequestration and secretion. J Insect Physiol 46:1449–1460PubMedCrossRefGoogle Scholar
  40. Dworak HA, Sink H (2002) Myoblast fusion in Drosophila. Bioessays 24:591–601PubMedCrossRefGoogle Scholar
  41. Dworak HA et al (2001) Characterization of Drosophila hibris, a gene related to human nephrin. Development 128:4265–4276PubMedGoogle Scholar
  42. Erickson MRS et al (1997) Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol 138(3):589–603PubMedPubMedCentralCrossRefGoogle Scholar
  43. Francois V et al (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8:2602–2616PubMedCrossRefGoogle Scholar
  44. Frei R et al (2010) MHC class II molecules enhance toll-like receptor mediated innate immune responses. PLoS One 5(1):e8808PubMedPubMedCentralCrossRefGoogle Scholar
  45. Galletta BJ et al (1999) Identification of a Drosophila homologue to vertebrate Crk by interaction with MBC. Gene 228(1–2):243–252PubMedCrossRefGoogle Scholar
  46. Ganz T (2003) Microbiology: Gut defence. Nature 422(6931):478–479PubMedCrossRefGoogle Scholar
  47. Garayoa M et al (1994) Myoendocrine-like cells in invertebrates: occurrence of noncardiac striated secretory-like myocytes in the gut of the ant Formica polyctena. Gen Comp Endocrinol 95:133–142PubMedCrossRefGoogle Scholar
  48. Gaul U, Weigel D (1990) Regulation of kruppel expression in the anlage of the Malpighian tubules in Drosophila embryo. Mech Dev 33:57–67PubMedCrossRefGoogle Scholar
  49. Gautam N (2012) Studies on the role of ecdysone signaling in development and function of Malpighian tubules of Drosophila melanogaster. PhD Thesis, Banaras Hindu University, VaranasiGoogle Scholar
  50. Gautam NK, Tapadia MG (2010) Ecdysone signaling is required for proper organization and fluid secretion of stellate cells in the Malpighian tubules of Drosophila melanogaster. Int J Dev Biol 54(4):635–642PubMedCrossRefGoogle Scholar
  51. Gautam NK et al (2015) Ecdysone regulates morphogenesis and function of Malpighian tubules in Drosophila melanogaster through EcR-B2isoform. Dev Bio 398:163–176CrossRefGoogle Scholar
  52. Gee et al (2015) KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 125(6):2375–2384PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357PubMedCrossRefGoogle Scholar
  54. Harbeck R, Lengyel J (1995) Genes controlling posterior gut development in the Drosophila embryo. Roux’s Arch Dev Biol 204:308–329CrossRefGoogle Scholar
  55. Harbecke R, Janning W (1989) The segmentation gene Kruppel of Drosophila melanogasterhas homeotic properties. Genes Dev 3:114–122PubMedCrossRefGoogle Scholar
  56. Heron M (2016) Deaths: leading causes for 2013. Natl Vital Stat Rep 65:11Google Scholar
  57. Hirata T et al (2012) In vivo Drosophila genetic model for calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 303(11):F1555–F1562PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ho AW, Wong CK, Lam CW (2008) Tumor necrosis factor-alpha up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology 213(7):533–544PubMedCrossRefGoogle Scholar
  59. Hoch M, Pankratz M (1996) Control of gut development by fork head and cell signaling molecules in Drosophila. Mech Dev 58:3–14PubMedCrossRefGoogle Scholar
  60. Hoch M et al (1994) Sequential fates in a single cell are established by the neurogenic cascade in the Malpighian tubules of Drosophila. Development 120:3439–3450PubMedGoogle Scholar
  61. Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19PubMedCrossRefGoogle Scholar
  62. Imig JD, Ryan MJ (2013) Immune and inflammatory role in renal disease. Compr Physiol 3(2):957–976PubMedPubMedCentralGoogle Scholar
  63. Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21PubMedGoogle Scholar
  64. Jacinto AML et al (2013) Urine concentrations of xanthine, hypoxanthine and uric acid in UK Cavalier King Charles spaniels. J Small Anim Pract 54:395–398PubMedCrossRefGoogle Scholar
  65. Janning W et al (1986) Clonal analysis of the blastoderm anlage of the Malpighain tubules in Drosophila melanogaster. Roux’s Arch Dev Biol 195:22–32CrossRefGoogle Scholar
  66. Jha MK et al (2009) Defective survival of naive CD8+ T lymphocytes in the absence of the beta3 regulatory subunit of voltage-gated calcium channels. Nat Immunol 10:1275–1282PubMedPubMedCentralCrossRefGoogle Scholar
  67. Johnson EC et al (2005) A novel diuetic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208:1239–1246PubMedCrossRefGoogle Scholar
  68. Jung CA et al (2005) Renal tubule development in Drosophila: a closer look at cellular level. J Am Soc Nephrol. 16:322–328PubMedCrossRefGoogle Scholar
  69. Kaufmann N et al (2005) Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Physiol Cell Physiol 289:397–407CrossRefGoogle Scholar
  70. Kean L et al (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 282:1297–1307CrossRefGoogle Scholar
  71. Kerber B et al (1998) Seven-up, the Drosophila homolog of the COUP-TF orphan receptors, controls cell proliferation in the insect kidney. Genes Dev 12:1781–1786PubMedPubMedCentralCrossRefGoogle Scholar
  72. Khoshnoodi J, Tryggvason K (2001) Congenital nephritic syndromes. Curr Opin Genet Dev 11:322–327PubMedCrossRefGoogle Scholar
  73. Kim HS et al (2011) VAB-10 spectraplakin acts in cell and nuclear migration in Caenorhabditis elegans. Development 138:4013–4023PubMedPubMedCentralCrossRefGoogle Scholar
  74. King LS et al (2001) Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 345:175–179PubMedCrossRefGoogle Scholar
  75. Kirsch K et al (1999) CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Natl Acad Sci 96:6211–6216PubMedPubMedCentralCrossRefGoogle Scholar
  76. Knier CG et al (2016) Bicaudal-C in Drosophila as a model of polycystic kidney disease (PKD) and intersection of oxalate nephrolithiasis FASEB J 30: Sup 1224.27Google Scholar
  77. Koelle MR et al (1991) The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor super family. Cell 67:59–77PubMedCrossRefGoogle Scholar
  78. Landry GM et al (2016) Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 310(2):152–159CrossRefGoogle Scholar
  79. Lanier LM, Gertler FB (2000) From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr Opin Neurobiol 10:80–87PubMedCrossRefGoogle Scholar
  80. Lebovitz RM et al (1989) Molecular characterization and expression of the (Na+/K+)-ATPase-sub unit in Drosophila melanogaster. EMBO 8:193–202Google Scholar
  81. Lehmann R (1995) Cell-cell signaling, microtubules, and the loss of symmetry in the Drosophila oocyte. Cell 83:353–356PubMedCrossRefGoogle Scholar
  82. Lekven AC et al (1998) Faint sausage encode a novel extracellular protein of the immunoglobulin superfamily required for cell migration and the establishment of normal axonal pathways in the Drosophila nervous system. Development 125:2747–2758PubMedGoogle Scholar
  83. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefGoogle Scholar
  84. Lemaitre B et al (1995) A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 92(21):9465–9469PubMedPubMedCentralCrossRefGoogle Scholar
  85. Li et al (2014) Further, differential Notch activity is required for homeostasis of Malpighian tubules in adult Drosophila. J Genet Genomics 41:649–652PubMedCrossRefGoogle Scholar
  86. Li et al (2015) EGFR/MAPK signaling regulates the proliferation of Drosophila renal and nephric stem cells. J Genet Genomics 42:9e20Google Scholar
  87. Liu X et al (1999) Identification of genes controlling malpighian tubule and other epithelial morphogenesis in Drosophila melanogaster. Genetics 151:685–695PubMedPubMedCentralGoogle Scholar
  88. Lothar HH (2009) Significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152CrossRefGoogle Scholar
  89. Maddrell, O’Donnell (1992) Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J Exp Biol 172(1):417–429PubMedGoogle Scholar
  90. Maddrell SHP et al (1991) 5-hydroxytryptamine: a second diuretic hormone in Rhodniusprolixus. J Exp Biol 156:557–566PubMedGoogle Scholar
  91. Mathieson PW (2003) Immune dysregulation in minimal change nephropathy. Nephrol Dial Transplant 18(Suppl 6):vi26–vi29PubMedGoogle Scholar
  92. McGettigan J et al (2005) Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochem Mol Biol 35(7):741–754PubMedCrossRefGoogle Scholar
  93. Miller J et al (2013) Drosophila melanogaster as an emerging translational model of human nephrolithiasis. J Urol 190(5):1648–1656PubMedCrossRefGoogle Scholar
  94. Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 9:371–379CrossRefGoogle Scholar
  95. Morris SNS et al (2012) Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta 1822:1230–1237PubMedPubMedCentralCrossRefGoogle Scholar
  96. Musselman LP et al (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4(6):842–849PubMedPubMedCentralCrossRefGoogle Scholar
  97. Na J, Cagan RL (2013) The Drosophila nephrocyte: back on stage. J Am Soc Nephrol 24:161–163PubMedCrossRefGoogle Scholar
  98. Na et al (2015) Diet-induced podocyte dysfunction in Drosophila and Mammals. Cell Rep 12(4):636–647PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nakhoul NL, Hamm LL (2002) Vacuolar H(+)-ATPase in the kidney. J Nephrol (Suppl 5):S22–S31Google Scholar
  100. Nielsen S et al (1993) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383PubMedCrossRefGoogle Scholar
  101. Nolan KM et al (1998) Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev 12:3337–3342PubMedPubMedCentralCrossRefGoogle Scholar
  102. O’Donnell, Maddrell (1995) Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J Exp Biol 198:1647–1653PubMedGoogle Scholar
  103. Oro AE et al (1990) Relationship between the product of Dosophila ultra spiracle locus and vertebrate retinoid X receptor. Nature 347:298–301PubMedCrossRefGoogle Scholar
  104. Overend G et al (2012) The receptor guanylate cyclase Gyc76C and a peptide ligand, NPLP1-VQQ, modulate the innate immune IMD pathway in response to salt stress. Peptides 34(1):209–218PubMedCrossRefGoogle Scholar
  105. Palmer LG, Schnermann J (2015) Integrated control of Na transport along the nephron. Clinical J Am Soc Nephrol 10(4):676–687CrossRefGoogle Scholar
  106. Pannabecke’r T (1995) Physiology of the Malpighian tubules. Annu Rev Entomol 40:493–510CrossRefGoogle Scholar
  107. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307PubMedCrossRefGoogle Scholar
  108. Pendse J et al (2013) A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics 14:136–147PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pruyne D, Bretscher A (2000) Polarization of cell growth in yeast. I Establishment and maintenance of polarity states. J Cell Sci 113:365–375PubMedGoogle Scholar
  110. Pütz M et al (2005) In Drosophila melanogaster, the rolling pebbles isoform 6 (Rols6) is essential for proper Malpighian tubule morphology. Mech Dev 122:1206–1217PubMedCrossRefGoogle Scholar
  111. Rheault MR, O’Donnell MJ (2001) Analysis of K+ transport in Malpighian tubules of Drosophila melanogaster: evidence for spatial and temporal heterogeneity. J Exp Biol 204:2289–2299PubMedGoogle Scholar
  112. Rheault MR, O’Donnell MJ (2004) Organic cation transport by Malpighian tubules of Drosophila melanogaster: application of two novel electrophysiological methods. J Exp Biol 207:2173–2184PubMedCrossRefGoogle Scholar
  113. Robinson SW et al (2013) FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster. Nucleic Acids Res 41(Database issue):D744–D750PubMedCrossRefGoogle Scholar
  114. Roy A, Al-bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10(2):305–324PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rulifson EJ et al (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120PubMedCrossRefGoogle Scholar
  116. Sands JM, Layton HE (2009) The physiology of urinary concentration: an update. Semin Nephrol 29(3):178–195PubMedPubMedCentralCrossRefGoogle Scholar
  117. Saxena L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  118. Schubiger M et al (1998) Drosophila EcR-B ecdysone receptor isoforms required for larval molting and for neuron remodling during metamorphosis. Development 125:2053–2062PubMedGoogle Scholar
  119. Silverman N, Maniatis T (2001) NF-kappa B signaling pathways in mammalian and insect innate immunity. Genes Dev 15(18):2321–2342PubMedCrossRefGoogle Scholar
  120. Sindić A et al (2007) Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16:484PubMedCrossRefGoogle Scholar
  121. Singh SR et al (2007) The adult Drosophila Malpighian tubule are maintained by pluripotent stem cells. Cell Stem Cell 16:191–203CrossRefGoogle Scholar
  122. Skaer H (1989) Cell division in Malpighian tubule development in D. melanogaster is regulated by a single tip cell. Nature 342:566–569CrossRefGoogle Scholar
  123. Skaer H (1993) The alimentary canal. In: Bate M, Arias AM (eds) Development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Plain view, pp 941–1012Google Scholar
  124. Skaer H, Martinez A (1992) The wingless product is required for cell proliferation in the Malpighian tubules anlage of Drosophila melanogaster. Development 116:745–754Google Scholar
  125. Sözen MA et al (1997) Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc Natl Acad Sci USA 94(10):5207–5212PubMedPubMedCentralCrossRefGoogle Scholar
  126. Stergiopoulos K et al (2009) Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiol Genomics 37(1):1–11PubMedCrossRefGoogle Scholar
  127. Sullivan W, Theurkauf WE (1995) The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr Opin Cell Biol 7:18–22PubMedCrossRefGoogle Scholar
  128. Syed KH et al (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27(12):4273–4287CrossRefGoogle Scholar
  129. Talbot WS et al (1993) Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73(7):1323–1337PubMedCrossRefGoogle Scholar
  130. Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26(4):193–198PubMedCrossRefGoogle Scholar
  131. Tepass U (1996) Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev Biol 177:217–225PubMedCrossRefGoogle Scholar
  132. Tepass U (1997) Epithelial differentiation in Drosophila. Bioessays 19:673–682PubMedCrossRefGoogle Scholar
  133. Tepass U, Hartenstein V (1994) The development of cellular junctions in the Drosophila embryo. Dev Biol 161:563–596PubMedCrossRefGoogle Scholar
  134. Terhzaz S et al (2010) Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants. Physiol Genomics 41(1):33–41PubMedCrossRefGoogle Scholar
  135. Thomas HE et al (1993) Heterodimerization of Drosophila ecdysone receptor with retinoid X receptor and ultra spiracle. Nature 362:471–475PubMedCrossRefGoogle Scholar
  136. Tossi A, Sandi L et al (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8(9):743–761PubMedCrossRefGoogle Scholar
  137. Trinh I, Boulianne GL (2013) Modeling obesity and its associated disorders in Drosophila. Physiology 28:117–124PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tzou P et al (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13(5):737–748PubMedCrossRefGoogle Scholar
  139. Van Kooten C et al (2000) Immunological function of tubular epithelial cells: the functional implications of CD40 expression. Exp Nephrol 8(4-5):203–207PubMedCrossRefGoogle Scholar
  140. Vasioukhin V et al (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 21:209–219CrossRefGoogle Scholar
  141. Verma P, Tapadia MG (2012) Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS One 7(7):e40714PubMedPubMedCentralCrossRefGoogle Scholar
  142. Verma P, Tapadia MG (2014) Epithelial immune response in Drosophila malpighian tubules: interplay between Diap2 and ion channels. J Cell Physiol 229(8):1078–1095PubMedCrossRefGoogle Scholar
  143. Verma P, Tapadia MG (2015) Early gene broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster. Mol Immunol 66(2):325–339PubMedCrossRefGoogle Scholar
  144. Wan S et al (2000) Multiple signalling pathways establish cell fate and cell number inDrosophila Malpighian tubules. Dev Biol 217:153–165PubMedCrossRefGoogle Scholar
  145. Wang T et al (2001) Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol 281:F1117–F1122Google Scholar
  146. Wang J et al (2004) Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol 5:R6CrossRefGoogle Scholar
  147. Weavers H, Skaer H (2013) Tip cells act as dynamic cellular anchors in the morphogenesis of looped renal tubules in Drosophila. Dev Cell 27(3):331–344PubMedPubMedCentralCrossRefGoogle Scholar
  148. Weavers H et al (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 15:322–326CrossRefGoogle Scholar
  149. Weigel D et al (1989) Primordeum specific requirement of the homeotic gene fork head in the developing gut of the Drosophila embryo. Roux’s Arch Dev Biol 98:201–210CrossRefGoogle Scholar
  150. Wessing A et al (1992) Two types of concretions in Drosophila Malpighian tubules as revealed by X-ray microanalysis: a study on urine formation. J Insect Physiol 38:543–554CrossRefGoogle Scholar
  151. Wodarz A et al (1993) Crumbs is involved in the control of apical protein targeting during Drosophila epithelial development. Mech Dev 44:175–187PubMedCrossRefGoogle Scholar
  152. Wodarz et al (1995) Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82:67–76PubMedCrossRefGoogle Scholar
  153. Woolf A, Bard J (eds) (2003) The kidney: from normal development to congenital disease. Academic Press, San Diego, pp. 165–179CrossRefGoogle Scholar
  154. Wu L, Langyel J (1998) Role of caudal in hind gut specification and gastrulation suggests homology between Drosophila amnoproctodeal invagination and vertebrate blastopore. Development 125:2433–2442PubMedGoogle Scholar
  155. Wu et al (2014) An emerging translational model to screen potential medicinal plants for nephrolithiasis, an independent risk factor for chronic kidney disease. Evid Based Complement Alternat Med. eID 972958:1–7Google Scholar
  156. Wu Y et al (2015) Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol. 309(7):R747–R756PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yadav S, Tapadia MG (2016) Expression of polyQ aggregates in Malpighian tubules leads to degeneration in Drosophila melanogaster. Dev Biol 409(1):166–180PubMedCrossRefGoogle Scholar
  158. Yao TP et al (1992) Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71:63–72PubMedCrossRefGoogle Scholar
  159. Yap AS et al (1997) Molecular and functional analysis of cadherin-based adherens junction. Annu Rev Cell Dev Biol 13:9119–9146CrossRefGoogle Scholar
  160. Zeng X et al (2010) Tumor suppressors Sav/Scrib and oncogene Ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J Cell Physiol 224(3):766–774PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhang B et al (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol. 19(5):923–932PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Naveen Kumar Gautam
    • 1
  • Puja Verma
    • 2
  • Madhu G. Tapadia
    • 2
  1. 1.Embryotoxicology Laboratory, Environmental Toxicology DivisionCSIR-Indian Institute of Toxicology Research (CSIR-IITR)LucknowIndia
  2. 2.Department of Zoology, Cytogenetics LaboratoryBanaras Hindu UniversityVaranasiIndia

Personalised recommendations