Skip to main content

Surface Forces and Nanorheology of Molecularly Thin Films

  • Chapter
  • First Online:
Nanotribology and Nanomechanics

Abstract

In this chapter, we describe the static and dynamic normal forces that occur between surfaces in vacuum or liquids and the different modes of friction that can be observed between: (i) bare surfaces in contact (dry or interfacial friction), (ii) surfaces separated by a thin liquid film (lubricated friction), and (iii) surfaces coated with organic monolayers (boundary friction). Experimental methods suitable for measuring normal surface forces, adhesion and friction (lateral or shear) forces of different magnitude at the molecular level are described. We explain the molecular origin of van der Waals, electrostatic, solvation and polymer-mediated interactions, and basic models for the contact mechanics of adhesive and nonadhesive elastically deforming bodies. The effects of interaction forces, molecular shape, surface structure and roughness on adhesion and friction are discussed. Simple models for the contributions of the adhesion force and external load to interfacial friction are illustrated with experimental data on both unlubricated and lubricated systems, as measured with the surface forces apparatus. We discuss rate-dependent adhesion (adhesion hysteresis ) and how this is related to friction. Some examples of the transition from wearless friction to friction with wear are shown. Lubrication in different lubricant thickness regimes is described together with explanations of nanorheological concepts. The occurrence of and transitions between smooth and stick–slip sliding in various types of dry (unlubricated and solid boundary lubricated) and liquid lubricated systems are discussed based on recent experimental results and models for stick–slip involving memory distance and dilatancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander S (1977) Adsorption of chain molecules with a polar head a-scaling description. J Phys (Paris) 38:983–987

    Article  Google Scholar 

  • Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33:183–192

    Article  Google Scholar 

  • Attard P (2003) Nanobubbles and the hydrophobic attraction. Adv Colloid Interface Sci 104:75–91

    Article  Google Scholar 

  • Awschalom DD, Warnock J (1987) Supercooled liquids and solids in porous-glass. Phys Rev B 35:6779–6785

    Article  Google Scholar 

  • Barthel E, Roux S (2000) Velocity-dependent adherence: an analytical approach for the JKR and DMT models. Langmuir 16:8134–8138

    Article  Google Scholar 

  • Berman AD (1996) Dynamics of molecules at surfaces. University of California, Santa Barbara

    Google Scholar 

  • Berman A, Israelachvili J (1997) Control and minimization of friction via surface modification. In: Bhushan B (ed) Micro/nanotribology and Its applications. Kluwer Academic Publ, Dordrecht, pp 317–329

    Chapter  Google Scholar 

  • Berman AD, Ducker WA, Israelachvili JN (1996a) Origin and characterization of different stick-slip friction mechanisms. Langmuir 12:4559–4563

    Article  Google Scholar 

  • Berman AD, Ducker WA, Israelachvili JN (1996b) Experimental and theoretical investigations of stick-slip friction mechanisms. In: Persson BNJ, Tosatti E (eds) Physics of sliding friction. Kluwer Academic Publ, Dordrecht, pp 51–67

    Chapter  Google Scholar 

  • Berman A, Drummond C, Israelachvili J (1998) Amontons’ law at the molecular level. Tribol Lett 4:95–101

    Article  Google Scholar 

  • Berthoud P, Baumberger T, G’Sell C, Hiver JM (1999) Physical analysis of the state- and rate-dependent friction law: static friction. Phys Rev B 59:14313–14327

    Article  Google Scholar 

  • Bordarier P, Schoen M, Fuchs AH (1998) Stick-slip phase transitions in confined solidlike films from an equilibrium perspective. Phys Rev E 57:1621–1635

    Article  Google Scholar 

  • Bowden FP, Tabor D (1971) The Friction and Lubrication of Solids. Claredon, London

    MATH  Google Scholar 

  • Bowden FP, Tabor D (1973) An Introduction to tribology. Anchor/Doubleday, Garden City

    Google Scholar 

  • Briscoe BJ, Evans DCB (1982) The shear properties of Langmuir-Blodgett layers. Proc R Soc London Ser A-Math Phys Eng Sci 380:389–407

    Article  Google Scholar 

  • Briscoe BJ, Evans DCB, Tabor D (1977) Influence of contact pressure and saponification on sliding behavior of stearic-acid monolayers. J Colloid Interface Sci 61:9–13

    Article  Google Scholar 

  • Buckley DH (1977) Metal-to-metal interface and its effect on adhesion and friction. J Colloid Interface Sci 58:36–53

    Article  Google Scholar 

  • Cain RG, Page NW, Biggs S (2001) Microscopic and macroscopic aspects of stick-slip motion in granular shear. Phys Rev E 64:8

    Article  Google Scholar 

  • Campbell SE, Luengo G, Srdanov VI, Wudl F, Israelachvili JN (1996) Very low viscosity at the solid-liquid interface induced by adsorbed C-60 monolayers. Nature 382:520–522

    Article  Google Scholar 

  • Carlson JM, Batista AA (1996) Constitutive relation for the friction between lubricated surfaces. Phys Rev E 53:4153–4165

    Article  Google Scholar 

  • Carlson JM, Langer JS (1989) Mechanical model of an earthquake fault. Phys Rev A 40:6470–6484

    Article  MathSciNet  Google Scholar 

  • Casimir HBG, Polder D (1948) The influence of retardation on the London-van der Waals forces. Phys Rev 73:360–372

    Article  MATH  Google Scholar 

  • Chan DYC, Horn RG (1985) The drainage of thin liquid-films between solid-surfaces. J Chem Phys 83:5311–5324

    Article  Google Scholar 

  • Chen YL, Helm CA, Israelachvili JN (1991) Molecular mechanisms associated with adhesion and contact-angle hysteresis of monolayer surfaces. J Phys Chem 95:10736–10747

    Article  Google Scholar 

  • Cheng SF, Luan BQ, Robbins MO (2010) Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys Rev E 81:016102

    Google Scholar 

  • Christenson HK (1988) Adhesion between surfaces in undersaturated vapors - A reexamination of the influence of meniscus curvature and surface forces. J Colloid Interface Sci 121:170–178

    Article  Google Scholar 

  • Christenson HK, Claesson PM (2001) Direct measurements of the force between hydrophobic surfaces in water. Adv Colloid Interface Sci 91:391–436

    Article  Google Scholar 

  • Christenson HK, Gruen DWR, Horn RG, Israelachvili JN (1987) Structuring in liquid alkanes between solid-surfaces—force measurements and mean-field theory. J Chem Phys 87:1834–1841

    Article  Google Scholar 

  • Christenson HK, Claesson PM, Berg J, Herder PC (1989) Forces between fluorocarbon surfactant monolayers—salt effects on the hydrophobic interaction. J Phys Chem 93:1472–1478

    Article  Google Scholar 

  • Christenson HK, Fang JF, Ninham BW, Parker JL (1990) Effect of divalent electrolyte on the hydrophobic attraction. J Phys Chem 94:8004–8006

    Article  Google Scholar 

  • Claesson PM, Blom CE, Herder PC, Ninham BW (1986) Interactions between water-stable hydrophobic Langmuir-Blodgett monolayers on mica. J Colloid Interface Sci 114:234–242

    Article  Google Scholar 

  • Claesson PM, Ederth T, Bergeron V, Rutland MW (1996) Techniques for measuring surface forces. Adv Colloid Interface Sci 67:119–183

    Article  Google Scholar 

  • Coakley CJ, Tabor D (1978) Direct measurement of van der Waals forces between solids in air. J Phys D Appl Phys 11:L77–L82

    Article  Google Scholar 

  • Craig VSJ (1997) An historical review of surface force measurement techniques. Colloid Surf A-Physicochem Eng Asp 129:75–93

    Article  Google Scholar 

  • Craig VSJ, Ninham BW, Pashley RM (1998) Study of the long-range hydrophobic attraction in concentrated salt solutions and its implications for electrostatic models. Langmuir 14:3326–3332

    Article  Google Scholar 

  • de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Article  Google Scholar 

  • de Gennes PG (1981) Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules 14:1637–1644

    Article  Google Scholar 

  • de Gennes PG (1982) Polymers at an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15:492–500

    Article  Google Scholar 

  • de Gennes PG (1987) Polymers at an interface—a simplified view. Adv Colloid Interface Sci 27:189–209

    Article  Google Scholar 

  • Demirel AL, Granick S (1996) Glasslike transition of a confined simple fluid. Phys Rev Lett 77:2261–2264

    Article  Google Scholar 

  • Derjaguin BV (1934a) Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilchen, Kolloid-Zeitschrift 69:155–164

    Article  Google Scholar 

  • Derjaguin BV (1934b) Molekulartheorie der äuβeren Reibung. Z Phys 88:661–675

    Article  MATH  Google Scholar 

  • Derjaguin BV (1988) Mechanical-properties of the boundary lubrication layer. Wear 128:19–27

    Article  Google Scholar 

  • Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica URSS 14:633–662

    Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  Google Scholar 

  • Deruelle M, Tirrell M, Marciano Y, Hervet H, Léger L (1995) Adhesion energy between polymer networks and solid surfaces modified by polymer attachment. Faraday Discuss 98:55–65

    Article  Google Scholar 

  • Dhinojwala A, Granick S (1997) Surface forces in the tapping mode: solvent permeability and hydrodynamic thickness of adsorbed polymer brushes. Macromolecules 30:1079–1085

    Article  Google Scholar 

  • Dhinojwala A, Bae SC, Granick S (2000) Shear-induced dilation of confined liquid films. Tribol Lett 9:55–62

    Article  Google Scholar 

  • Dieterich JH (1978) Time-dependent friction and mechanics of stick-slip. Pure appl Geophys 116:790–806

    Article  Google Scholar 

  • Donaldson SH, Lee CT, Chmelka BF, Israelachvili JN (2011) General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers. Proc Natl Acad Sci USA 108:15699–15704

    Article  Google Scholar 

  • Donaldson SH, Royne A, Kristiansen K, Rapp MV, Das S, Gebbie MA, Lee DW, Stock P, Valtiner M, Israelachvili J (2015) Developing a general interaction potential for hydrophobic and hydrophilic interactions. Langmuir 31:2051–2064

    Article  Google Scholar 

  • Dowson D (1998) History of tribology, 2nd edn. Professional Engineering Publishing, London

    Google Scholar 

  • Drummond C, Israelachvili J (2000) Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33:4910–4920

    Article  Google Scholar 

  • Drummond C, Israelachvili J (2001) Dynamic phase transitions in confined lubricant fluids under shear. Phys Rev E 63:11

    Article  Google Scholar 

  • Drummond C, Elezgaray J, Richetti P (2002) Behavior of adhesive boundary lubricated surfaces under shear: a new dynamic transition. Europhys Lett 58:503–509

    Article  Google Scholar 

  • Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) The general theory of van der Waals forces. Adv Phys 10:165–209

    Article  MathSciNet  MATH  Google Scholar 

  • Evans EA (1989) Force between surfaces that confine a polymer-solution: derivation from self-consistent field-theories. Macromolecules 22:2277–2286

    Article  Google Scholar 

  • Feigin RI, Napper DH (1980) Stabilization of colloids by free polymer. J Colloid Interface Sci 74:567–571

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Filippov AE, Klafter J, Urbakh M (2002) Inverted stick-slip friction: what is the mechanism? J Chem Phys 116:6871–6874

    Article  Google Scholar 

  • Fisher LR, Israelachvili JN (1981) Direct measurement of the effect of meniscus forces on adhesion—study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces. Colloids Surf 3:303–319

    Article  Google Scholar 

  • Fox HW, Zisman WA (1952) The spreading of liquids on low-energy surfaces. 3. Hydrocarbon surfaces. J Colloid Sci 7:428–442

    Article  Google Scholar 

  • Frink LJD, van Swol F (1998) Solvation forces between rough surfaces. J Chem Phys 108:5588–5598

    Article  Google Scholar 

  • Fuller KNG, Tabor D (1975) Effect of surface-roughness on adhesion of elastic solids. Proc R Soc London Ser A-Math Phys Eng Sci 345:327–342

    Article  Google Scholar 

  • Gao JP, Luedtke WD, Landman U (1997) Layering transitions and dynamics of confined liquid films. Phys Rev Lett 79:705–708

    Article  Google Scholar 

  • Gao JP, Luedtke WD, Landman U (2000) Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol Lett 9:3–13

    Article  Google Scholar 

  • Gao JP, Luedtke WD, Gourdon D, Ruths M, Israelachvili JN, Landman U (2004) Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J Phys Chem B 108:3410–3425

    Article  Google Scholar 

  • Gee ML, Israelachvili JN (1990) Interactions of surfactant monolayers across hydrocarbon liquids. J Chem Soc-Faraday Trans 86:4049–4058

    Article  Google Scholar 

  • Gee ML, McGuiggan PM, Israelachvili JN, Homola AM (1990) Liquid to solid-like transitions of molecularly thin-films under shear. J Chem Phys 93:1895–1906

    Article  Google Scholar 

  • Gourdon D, Israelachvili JN (2003) Transitions between smooth and complex stick-slip sliding of surfaces. Phys Rev E 68:10

    Article  Google Scholar 

  • Granick S (1991) Motions and relaxations of confined liquids. Science 253:1374–1379

    Article  Google Scholar 

  • Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc Royal Soc London Ser A-Math Phys Sci 295:300–319

    Google Scholar 

  • Grosch KA (1963) Relation between friction and visco-elastic properties of rubber. Nature 197:858–859

    Article  Google Scholar 

  • Gyalog T, Thomas H (1997) Friction between atomically flat surfaces. Europhys Lett 37:195–200

    Article  Google Scholar 

  • Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • He G, Muser MH, Robbins MO (1999) Adsorbed layers and the origin of static friction. Science 284:1650–1652

    Article  Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922

    Article  Google Scholar 

  • Henderson D, Lozadacassou M (1986) A simple theory for the force between spheres immersed in a fluid. J Colloid Interface Sci 114:180–183

    Article  Google Scholar 

  • Hertz H (1881) Über die Berührung fester elastischer Körper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Heslot F, Baumberger T, Perrin B, Caroli B, Caroli C (1994) Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys Rev E 49:4973–4988

    Article  Google Scholar 

  • Heuberger M, Luengo G, Israelachvili J (1997) Topographic information from multiple beam interferometry in the surface forces apparatus. Langmuir 13:3839–3848

    Article  Google Scholar 

  • Heuberger M, Drummond C, Israelachvili J (1998) Coupling of normal and transverse motions during frictional sliding. J Phys Chem B 102:5038–5041

    Article  Google Scholar 

  • Heymann F, Rabinowicz E, Rightmire B (1955) Friction apparatus for very low-speed sliding studies. Rev Sci Instrum 26:56–58

    Article  Google Scholar 

  • Hirano M, Shinjo K, Kaneko R, Murata Y (1991) Anisotropy of frictional forces in muscovite mica. Phys Rev Lett 67:2642–2645

    Article  Google Scholar 

  • Hirz SJ, Homola AM, Hadziioannou G, Frank CW (1992) Effect of substrate on shearing properties of ultrathin polymer-films. Langmuir 8:328–333

    Article  Google Scholar 

  • Homola AM, Israelachvili JN, Gee ML, McGuiggan PM (1989) Measurements of and relation between the adhesion and friction of 2 surfaces separated by molecularly thin liquid-films. J Tribol Trans ASME 111:675–682

    Google Scholar 

  • Homola AM, Israelachvili JN, McGuiggan PM, Gee ML (1990) Fundamental experimental studies in tribology—the transition from interfacial friction of undamaged molecularly smooth surfaces to normal friction with wear. Wear 136:65–83

    Article  Google Scholar 

  • Horn RG (1990) Surface forces and their action in ceramic materials. J Am Ceram Soc 73:1117–1135

    Article  Google Scholar 

  • Horn RG, Israelachvili JN (1981) Direct measurement of structural forces between two surfaces in a non-polar liquid. J Chem Phys 75:1400–1411

    Article  Google Scholar 

  • Horn RG, Israelachvili JN, Pribac F (1987) Measurement of the deformation and adhesion of solids in contact. J Colloid Interface Sci 115:480–492

    Article  Google Scholar 

  • Horn RG, Clarke DR, Clarkson MT (1988) Direct measurement of surface forces between sapphire crystals in aqueous solutions. J Mater Res 3:413–416

    Article  Google Scholar 

  • Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408

    Article  Google Scholar 

  • Hu HW, Granick S (1992) Viscoelastic dynamics of confined polymer melts. Science 258:1339–1342

    Article  Google Scholar 

  • Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70:12

    Article  Google Scholar 

  • Israelachvili JN (1973) Thin-film studies using multiple-beam interferometry. J Colloid Interface Sci 44:259–272

    Article  Google Scholar 

  • Israelachvili JN (1986) Measurements of the viscosity of thin fluid films between two surfaces with and without adsorbed polymers. Colloid Polym Sci 264:1060–1065

    Article  Google Scholar 

  • Israelachvili JN (1995) Surface forces and microrheology of molecularly thin liquid films. In: Bhushan B (ed) Handbook of mico/nanotribology. CRC, Boca Raton, pp 319–467

    Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, London

    Google Scholar 

  • Israelachvili JN, Adams GE (1978) Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 1 74:975–1001

    Article  Google Scholar 

  • Israelachvili J, Berman A (1995) Irreversibility, energy-dissipation, and time effects in intermolecular and surface interactions. Isr J Chem 35:85–91

    Article  Google Scholar 

  • Israelachvili JN, Kott SJ (1989) Shear properties and structure of simple liquids in molecularly thin-films—the transition from bulk (continuum) to molecular behavior with decreasing film thickness. J Colloid Interface Sci 129:461–467

    Article  Google Scholar 

  • Israelachvili JN, McGuiggan PM (1990) Adhesion and short-range forces between surfaces. Part 1: new apparatus for surface force measurements. J Mater Res 5:2223–2231

    Article  Google Scholar 

  • Israelachvili J, Pashley R (1982) The hydrophobic interaction is long-range, decaying exponentially with distance. Nature 300:341–342

    Article  Google Scholar 

  • Israelachvili JN, McGuiggan PM, Homola AM (1988) Dynamic properties of molecularly thin liquid-films. Science 240:189–191

    Article  Google Scholar 

  • Israelachvili JN, Kott SJ, Gee ML, Witten TA (1989) Forces between mica surfaces across hydrocarbon liquids—effects of branching and polydispersity. Macromolecules 22:4247–4253

    Article  Google Scholar 

  • Israelachvili J, Gee M, Mcguiggan P, Thompson P, Robbins M (1990) Fall meeting, materials research society, Boston. In: Drake JM, Klafter J, Kopelman R (eds). MRS, Pittsburgh, pp 3–6

    Google Scholar 

  • Israelachvili J, McGuiggan P, Gee M, Homola A, Robbins M, Thompson P (1990) Liquid dynamics in molecularly thin-films. J Phys Cond Matter 2:SA89–SA98

    Google Scholar 

  • Israelachvili JN, Chen YL, Yoshizawa H (1994) Relationship between adhesion and friction forces. J Adhes Sci Technol 8:1231–1249

    Article  Google Scholar 

  • Israelachvili J, Chen Y-L, Yoshizawa H (1995) Relationship between adhesion and friction forces. In: Rimai DS, DeMejo LP, Mittal KL (eds) Fundamentals of adhesion and interfaces. Utrecht, VSP, pp 261–279

    Google Scholar 

  • Israelachvili J, Maeda N, Rosenberg KJ, Akbulut M (2005) Effects of sub-angstrom (pico-scale) structure of surfaces on adhesion, friction, and bulk mechanical properties. J Mater Res 20:1952–1972

    Article  Google Scholar 

  • Joanny JF, Leibler L, Degennes PG (1979) Effects of polymer-solutions on colloid stability. J Polym Sci B-Polym Phys 17:1073–1084

    Article  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc Royal Soc A 324:301–313

    Google Scholar 

  • Jonsson B, Wennerstrom H (1983) Image-charge forces in phospholipid-bilayer systems. J Chem Soc Faraday Trans II 79:19–35

    Article  Google Scholar 

  • Kim HC, Russell TP (2001) Contact of elastic solids with rough surfaces. J Polym Sci B-Polym Phys 39:1848–1854

    Article  Google Scholar 

  • Kjellander R, Marcelja S (1985) Perturbation of hydrogen-bonding in water near polar surfaces. Chem Phys Lett 120:393–396

    Article  Google Scholar 

  • Klein J (1983) Forces between mica surfaces bearing adsorbed macromolecules in liquid-media. J Chem Soc Faraday Trans I 79:99–118

    Article  Google Scholar 

  • Klein J, Kumacheva E (1995) Confinement-induced phase-transitions in simple liquids. Science 269:816–819

    Article  Google Scholar 

  • Klein J, Kumacheva E (1998) Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J Chem Phys 108:6996–7009

    Article  Google Scholar 

  • Klein J, Luckham P (1982) Forces between two adsorbed polyethylene oxide layers immersed in a good aqueous solvent. Nature 300:429–431

    Article  Google Scholar 

  • Klein J, Luckham PF (1984) Long-range attractive forces between two mica surfaces in an aqueous polymer-solution. Nature 308:836–837

    Article  Google Scholar 

  • Klein J, Kamiyama Y, Yoshizawa H, Israelachvili JN, Fredrickson GH, Pincus P, Fetters LJ (1993) Lubrication forces between surfaces bearing polymer brushes. Macromolecules 26:5552–5560

    Article  Google Scholar 

  • Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid-surfaces bearing polymer brushes. Nature 370:634–636

    Article  Google Scholar 

  • Kuhl TL, Berman AD, Hui SW, Israelachvili JN (1998) Part 1. Direct measurement of depletion attraction and thin film viscosity between lipid bilayers in aqueous polyethylene glycol solutions. Macromolecules 31:8250–8257

    Article  Google Scholar 

  • Kumacheva E (1998) Interfacial friction measurement in Surface Force Apparatus. Prog Surf Sci 58:75–120

    Article  Google Scholar 

  • Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Q Rev Biophys 34:105–267

    Article  Google Scholar 

  • Leckband DE, Israelachvili JN, Schmitt FJ, Knoll W (1992) Long-range attraction and molecular-rearrangements in receptor-ligand interactions. Science 255:1419–1421

    Article  Google Scholar 

  • Lee DW, Banquy X, Israelachvili JN (2013) Stick-slip friction and wear of articular joints. Proc Natl Acad Sci USA 110:E567–E574

    Article  Google Scholar 

  • Lee DW, Banquy X, Kristiansen K, Kaufman Y, Boggs JM, Israelachvili JN (2014) Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc Natl Acad Sci USA 111:E768–E775

    Article  Google Scholar 

  • Lee DW, Kristiansen K, Donaldson SH, Cadirov N, Banquy X, Israelachvili JN (2015) Real-time intermembrane force measurements and imaging of lipid domain morphology during hemifusion. Nat Commun 6:7238

    Google Scholar 

  • Lessard RR, Zieminsk SA (1971) Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind Eng Chem Fundam 10:260–269

    Article  Google Scholar 

  • Leung K, Luzar A (2000) Dynamics of capillary evaporation. II. Free energy barriers. J Chem Phys 113:5845–5852

    Article  Google Scholar 

  • Lifshitz EM (1956) The theory of molecular attractive forces between solids. Soviet Physics JETP 2:73–83

    Google Scholar 

  • Lin Q, Meyer EE, Tadmor M, Israelachvili JN, Kuhl TL (2005) Measurement of the long- and short-range hydrophobic attraction between surfactant-coated surfaces. Langmuir 21:251–255

    Article  Google Scholar 

  • Luan BQ, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435:929–932

    Article  Google Scholar 

  • Luckham PF, Klein J (1990) Forces between mica surfaces bearing adsorbed homopolymers in good solvents—the effect of bridging and dangling tails. J Chem Soc Faraday Trans 86:1363–1368

    Google Scholar 

  • Luckham PF, Manimaaran S (1997) Investigating adsorbed polymer layer behaviour using dynamic surface force apparatuses—a review. Adv Colloid Interface Sci 73:1–46

    Google Scholar 

  • Luengo G, Israelachvili J, Dhinojwala A, Granick S (1996) Generalized effects in confined fluids: new friction map for boundary lubrication. Wear 200:328–335. Erratum: Wear 205:246 (1997)

    Google Scholar 

  • Luengo G, Schmitt FJ, Hill R, Israelachvili J (1997a) Thin film rheology and tribology of confined polymer melts: Contrasts with bulk properties. Macromolecules 30:2482–2494

    Article  Google Scholar 

  • Luengo G, Campbell SE, Srdanov VI, Wudl F, Israelachvili JN (1997b) Measurement of the adhesion and friction of smooth C-60 surfaces. Chem Mat 9:1166–1171

    Article  Google Scholar 

  • Luzar A, Bratko D, Blum L (1987) Monte-carlo simulation of hydrophobic interaction. J Chem Phys 86:2955–2959

    Article  Google Scholar 

  • Maeda N, Chen NH, Tirrell M, Israelachvili JN (2002) Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297:379–382

    Article  Google Scholar 

  • Mangipudi V, Tirrell M, Pocius AV (1994) Direct measurement of molecular-level adhesion between poly(ethylene-terephthalate) and polyethylene films—determination of surface and interfacial energies. J Adhes Sci Technol 8:1251–1270

    Article  Google Scholar 

  • Mao M, Zhang JH, Yoon RH, Ducker WA (2004) Is there a thin film of air at the interface between water and smooth hydrophobic solids? Langmuir 20:1843–1849. Erratum: Langmuir 20:4310

    Google Scholar 

  • Marcelja S, Mitchell DJ, Ninham BW, Sculley MJ (1977) Role of solvent structure in solution theory. J Chem Soc Faraday Trans II 73:630–648

    Article  Google Scholar 

  • Maugis D (1992) Adhesion of spheres—the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269

    Article  Google Scholar 

  • Maugis D, Pollock HM (1984) Surface forces, deformation and adherence at metal microcontacts. Acta Metall 32:1323–1334

    Article  Google Scholar 

  • McClelland GM (1989) Friction at weakly interacting interfaces. In: Grunze M, Kreuzer HJ (eds) Adhesion and friction. Springer, Berlin, Heidelberg

    Google Scholar 

  • McGuiggan PM, Israelachvili JN (1989) Measurements of the effect of angular lattice mismatch on the adhesion energy between two mica surfaces in water. In: Larson BC, Ruhle M, Seidman DN (eds) Characterization of the structure and chemistry of defects in materials. Materials Research Soc, Pittsburgh, pp 349–360

    Google Scholar 

  • McGuiggan PM, Israelachvili JN (1990) Adhesion and short-range forces between surfaces. 2. Effects of surface lattice mismatch. J Mater Res 5:2232–2243

    Article  Google Scholar 

  • McLaren KG, Tabor D (1963) Visco-elastic properties and friction of solids—friction of polymers—influence of speed and temperature. Nature 197:856–858

    Article  Google Scholar 

  • Merrill WW, Pocius AV, Thakker BV, Tirrell M (1991) Direct measurement of molecular-level adhesion forces between biaxially oriented solid polymer films. Langmuir 7:1975–1980

    Article  Google Scholar 

  • Meurk A, Luckham PF, Bergstrom L (1997) Direct measurement of repulsive and attractive van der Waals forces between inorganic materials. Langmuir 13:3896–3899

    Article  Google Scholar 

  • Meyer EE, Lin Q, Israelachvili JN (2005a) Effects of dissolved gas on the hydrophobic attraction between surfactant-coated surfaces. Langmuir 21:256–259

    Article  Google Scholar 

  • Meyer EE, Lin Q, Hassenkam T, Oroudjev E, Israelachvili JN (2005b) Origin of the long-range attraction between surfactant-coated surfaces. Proc Natl Acad Sci USA 102:6839–6842

    Article  Google Scholar 

  • Miller CA, Neogi P (1985) Interfacial phenomena: equilibrium and dynamic effects. Dekker, New York

    Google Scholar 

  • Milner ST, Witten TA, Cates ME (1988) Theory of the grafted polymer brush. Macromolecules 21:2610–2619

    Article  Google Scholar 

  • Mo YF, Szlufarska I (2010) Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81:17

    Article  Google Scholar 

  • Mo YF, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119

    Article  Google Scholar 

  • Muller VM, Yushchenko VS, Derjaguin BV (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci 77:91–101

    Article  Google Scholar 

  • Muller VM, Derjaguin BV, Toporov YP (1983) On 2 methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf 7:251–259

    Article  Google Scholar 

  • Nasuno S, Kudrolli A, Gollub JP (1997) Friction in granular layers: hysteresis and precursors. Phys Rev Lett 79:949–952

    Article  Google Scholar 

  • Parker JL, Claesson PM, Attard P (1994) Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J Phys Chem 98:8468–8480

    Article  Google Scholar 

  • Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions—a correlation of double-layer and hydration forces with surface cation-exchange properties. J Colloid Interface Sci 83:531–546

    Article  Google Scholar 

  • Pashley RM (1982) Hydration forces between mica surfaces in electrolyte solutions. Adv Colloid Interface Sci 16:57–62

    Article  Google Scholar 

  • Pashley RM, McGuiggan PM, Ninham BW, Evans DF (1985) Attractive forces between uncharged hydrophobic surfaces—direct measurements in aqueous-solution. Science 229:1088–1089

    Article  Google Scholar 

  • Patel SS, Tirrell M (1989) Measurement of forces between surfaces in polymer fluids. Annu Rev Phys Chem 40:597–635

    Article  Google Scholar 

  • Persson BNJ (1994) Theory of friction—the role of elasticity in boundary lubrication. Phys Rev B 50:4771–4786

    Article  Google Scholar 

  • Persson BNJ (2001) Elastoplastic contact between randomly rough surfaces. Phys Rev Lett 87:1–4

    Article  Google Scholar 

  • Persson BNJ, Tosatti E (2001) The effect of surface roughness on the adhesion of elastic solids. J Chem Phys 115:5597–5610

    Article  Google Scholar 

  • Qian LM, Luengo G, Perez E (2003) Thermally activated lubrication with alkanes: the effect of chain length. Europhys Lett 61:268–274

    Article  Google Scholar 

  • Rabinovich YI, Yoon RH (1994) Use of atomic-force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere. Langmuir 10:1903–1909

    Article  Google Scholar 

  • Rabinowicz E (1958) The intrinsic variables affecting the stick-slip process. Proc Phys Soc London 71:668–675

    Google Scholar 

  • Rabinowicz E (1995) Friction and wear of materials. Wiley, New York

    Google Scholar 

  • Raviv U, Perkin S, Laurat P, Klein J (2004) Fluidity of water confined down to subnanometer films. Langmuir 20:5322–5332

    Article  Google Scholar 

  • Rhykerd CL, Schoen M, Diestler DJ, Cushman JH (1987) Epitaxy in simple classical fluids in micropores and near-solid surfaces. Nature 330:461–463

    Article  Google Scholar 

  • Robbins MO, Thompson PA (1991) Critical velocity of stick-slip motion. Science 253:916

    Article  Google Scholar 

  • Ruths M (2003) Boundary friction of aromatic self-assembled monolayers: comparison of systems with one or both sliding surfaces covered with a thiol monolayer. Langmuir 19:6788–6795

    Article  Google Scholar 

  • Ruths M, Granick S (1998) Rate-dependent adhesion between polymer and surfactant monolayers on elastic substrates. Langmuir 14:1804–1814

    Article  Google Scholar 

  • Ruths M, Granick S (2000) Influence of alignment of crystalline confining surfaces on static forces and shear in a liquid crystal, 4′-n-pentyl-4-cyanobiphenyl. Langmuir 16:8368–8376

    Article  Google Scholar 

  • Ruths M, Johannsmann D, Ruhe J, Knoll W (2000) Repulsive forces and relaxation on compression of entangled, polydisperse polystyrene brushes. Macromolecules 33:3860–3870

    Article  Google Scholar 

  • Ruths M, Heuberger M, Scheumann V, Hu JJ, Knoll W (2001) Confinement-induced film thickness transitions in liquid crystals between two alkanethiol monolayers on gold. Langmuir 17:6213–6219

    Article  Google Scholar 

  • Ruths M, Alcantar NA, Israelachvili JN (2003) Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J Phys Chem B 107:11149–11157

    Article  Google Scholar 

  • Sader JE, Carnie SL, Chan DYC (1995) Accurate analytic formulas for the double-layer interaction between spheres. J Colloid Interface Sci 171:46–54

    Article  Google Scholar 

  • Scheutjens J, Fleer GJ (1985) Interaction between two adsorbed polymer layers. Macromolecules 18:1882–1900

    Article  Google Scholar 

  • Schoen M, Rhykerd CL, Diestler DJ, Cushman JH (1989) Shear forces in molecularly thin-films. Science 245:1223–1225

    Article  Google Scholar 

  • Schoen M, Hess S, Diestler DJ (1995) Rheological properties of confined thin-films. Phys Rev E 52:2587–2602

    Article  Google Scholar 

  • Schrader AM, Donaldson SH, Song J, Cheng CY, Lee DW, Han S, Israelachvili JN (2015) Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid-DMSO-H2O system. Proc Natl Acad Sci USA 112:10708–10713

    Article  Google Scholar 

  • Shrestha BR, Banquy X (2016) Hydration forces at solid and fluid biointerfaces. Biointerphases 11:11

    Article  Google Scholar 

  • Snook IK, van Megen W (1980) Solvation forces in simple dense fluids 1. J Chem Phys 72:2907–2913

    Article  Google Scholar 

  • Sridhar I, Johnson KL, Fleck NA (1997) Adhesion mechanics of the surface force apparatus. J Phys D-Appl Phys 30:1710–1719

    Article  Google Scholar 

  • Sridhar I, Zheng ZW, Johnson KL (2004) A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe. J Phys D-Appl Phys 37:2886–2895

    Article  Google Scholar 

  • Stanley HE, Teixeira J (1980) Interpretation of the unusual behavior of H2O and D2O at low-temperatures—tests of a percolation model. J Chem Phys 73:3404–3422

    Article  MathSciNet  Google Scholar 

  • Steinberg S, Ducker W, Vigil G, Hyukjin C, Frank C, Tseng MZ, Clarke DR, Israelachvili JN (1993) Van der Waals epitaxial-growth of alpha-alumina nanocrystals on mica. Science 260:656–659

    Article  Google Scholar 

  • Subbotin A, Semenov A, Manias E, Hadziioannou G, Tenbrinke G (1995a) Rheology of confined polymer melts under shear-flow—strong adsorption limit. Macromolecules 28:1511–1515

    Article  Google Scholar 

  • Subbotin A, Semenov A, Hadziioannou G, Tenbrinke G (1995b) Rheology of confined polymer melts under shear-flow—weak adsorption limit. Macromolecules 28:3901–3903

    Article  Google Scholar 

  • Sutcliffe MJ, Taylor SR, Cameron A (1978) Molecular asperity theory of boundary friction. Wear 51:181–192

    Article  Google Scholar 

  • Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58:2–13

    Article  Google Scholar 

  • Tabor D (1981) The role of surface and intermolecular forces in thin film lubrication. Tribol Ser 7:651–682

    Article  Google Scholar 

  • Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1990) Interactions between surfaces bearing end-adsorbed chains in a good solvent. Macromolecules 23:571–580

    Article  Google Scholar 

  • Thomas TR (1999) Rough surfaces, 2nd edn. Imperial College Press, London

    Google Scholar 

  • Thompson PA, Robbins MO (1990) Origin of stick-slip motion in boundary lubrication. Science 250:792–794

    Article  Google Scholar 

  • Thompson PA, Grest GS, Robbins MO (1992) Phase-transitions and universal dynamics in confined films. Phys Rev Lett 68:3448–3451

    Article  Google Scholar 

  • Tomlinson GA (1929) A molecular theory of friction. Phil Mag 7:905–939

    Article  Google Scholar 

  • Tsao YH, Evans DF, Wennerstrom H (1993) Long-range attractive force between hydrophobic surfaces observed by atomic-force microscopy. Science 262:547–550

    Article  Google Scholar 

  • Van Alsten J, Granick S (1990) Shear rheology in a confined geometry—polysiloxane melts. Macromolecules 23:4856–4862

    Article  Google Scholar 

  • van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the Stability of lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

  • Viani BE, Low PF, Roth CB (1983) Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J Colloid Interface Sci 96:229–244

    Article  Google Scholar 

  • Vigil G, Xu ZH, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165:367–385

    Article  Google Scholar 

  • Warnock J, Awschalom DD, Shafer MW (1986) Orientational behavior of molecular liquids in restricted geometries. Phys Rev B 34:475–478

    Article  Google Scholar 

  • Watanabe H, Tirrell M (1993) Measurement of forces in symmetric and asymmetric interactions between diblock copolymer layers adsorbed on mica. Macromolecules 26:6455–6466

    Article  Google Scholar 

  • Xie HW, Song KY, Mann DJ, Hase WL (2002) Temperature gradients and frictional energy dissipation in the sliding of hydroxylated alpha-alumina surfaces. Phys Chem Chem Phys 4:5377–5385

    Article  Google Scholar 

  • Yamada S, Israelachvili J (1998) Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J Phys Chem B 102:234–244

    Article  Google Scholar 

  • Yoshizawa H, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J Phys Chem 97:11300–11313

    Article  Google Scholar 

  • Yoshizawa H, Chen YL, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 1. relation between adhesion and friction. J Phys Chem 97:4128–4140

    Article  Google Scholar 

  • Zaloj V, Urbakh M, Klafter J (1999) Modifying friction by manipulating normal response to lateral motion. Phys Rev Lett 82:4823–4826

    Article  Google Scholar 

  • Zhu YX, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105

    Google Scholar 

  • Zhulina EB, Borisov OV, Priamitsyn VA (1990) Theory of steric stabilization of colloid dispersions by grafted polymers. J Colloid Interface Sci 137:495–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Woog Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, D.W., Ruths, M., Israelachvili, J.N. (2017). Surface Forces and Nanorheology of Molecularly Thin Films. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-51433-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51433-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51432-1

  • Online ISBN: 978-3-319-51433-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics