Skip to main content

Nanotribology, Nanomechanics and Materials Characterization Studies Using Scanning Probe Microscopy

  • Chapter
  • First Online:
Nanotribology and Nanomechanics

Abstract

Nanotribology and nanomechanics studies are needed to develop a fundamental understanding of interfacial phenomena on a small scale, and to study interfacial phenomena in micro/nanoelectromechanical systems (MEMS/NEMS), magnetic storage devices, and many other applications. Friction and wear of lightly loaded micro/nanocomponents are highly dependent on surface interactions (a few atomic layers). These structures generally are coated with molecularly thin films. Nanotribology and nanomechanics studies are also valuable in the fundamental understanding of interfacial phenomena in macrostructures, and provide a bridge between science and engineering. An atomic force microscope (AFM) tip is used to simulate a single asperity contact with a solid or lubricated surface. AFMs are used to study the various tribological phenomena, which include surface roughness, adhesion , friction, scratching, wear, detection of material transfer, and boundary lubrication . In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM. Mechanical properties such as hardness, Young’s modulus of elasticity, and creep/relaxation behavior can be determined on micro- to picoscales using a depth-sensing indentation system in an AFM. Localized surface elasticity and viscoelastic mapping near surface regions can be obtained of with nanoscale lateral resolution. Finally, an AFM can be used for nanofabrication/nanomachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelio S, Goldade AV, Rabe U, Scherer V, Bhushan B, Arnold W (2001) Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films 392:75–84

    Article  Google Scholar 

  • Anczykowski B, Kruger D, Babcock KL, Fuchs H (1996) Basic properties of dynamic force microscopy with the scanning force microscope in experiment and simulation. Ultramicroscopy 66:251–259

    Article  Google Scholar 

  • Anonymous (1959) The industrial graphite engineering handbook, National Carbon Company, New York

    Google Scholar 

  • Anonymous (2002) Properties of silicon, EMIS data reviews series no. 4. INSPEC, Institution of Electrical Engineers, London. See also Anonymous, MEMS Materials Database, http://www.memsnet.org/material/

  • Avila A, Bhushan B (2010) Electrical measurement techniques in atomic force microscopy, (invited). Crit Rev Solid State Mater Sci 35:38–51

    Article  Google Scholar 

  • Bhushan B (1995) Micro/Nanotribology and its applications to magnetic storage devices and MEMS. Tribol Int 28:85–95

    Article  Google Scholar 

  • Bhushan B (1996) Tribology and mechanics of magnetic storage devices, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Bhushan B (1997) Micro/Nanotribology and its applications, vol E330. Kluwer Academic Pub, Dordrecht, Netherlands

    Book  Google Scholar 

  • Bhushan B (1998) Tribology issues and opportunities in MEMS. Kluwer Academic Pub, Dordrecht, Netherlands

    Book  Google Scholar 

  • Bhushan B (1999a) Handbook of Micro/Nanotribology, 2nd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Bhushan B (1999b) Nanoscale Tribophysics and Tribomechanics. Wear 225–229:465–492

    Article  Google Scholar 

  • Bhushan B (1999c) Wear and mechanical characterisation on micro- to picoscales using AFM. Int Mat Rev 44:105–117

    Article  Google Scholar 

  • Bhushan B (1999d) Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diam Relat Mater 8:1985–2015

    Article  Google Scholar 

  • Bhushan B (2001a) Modern Tribology handbook, vol 1: principles of Tribology. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Bhushan B (2001b) Fundamentals of tribology and bridging the gap between the Macro- and Micro/Nanoscales, NATO Science series II–vol 10, Kluwer Academic Pub, Dordrecht, Netherlands

    Google Scholar 

  • Bhushan B (2001c) Nano- to microscale wear and mechanical characterization studies using scanning probe microscopy. Wear 251:1105–1123

    Article  Google Scholar 

  • Bhushan B (2003) Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J Vac Sci Technol B 21:2262–2296

    Article  Google Scholar 

  • Bhushan B (2005) Nanotribology and nanomechanics. Wear 259:1507–1531

    Article  Google Scholar 

  • Bhushan B (2008) Nanotribology, nanomechanics and nanomaterials characterization. Phil Trans R Soc A 366:1351–1381

    Article  MathSciNet  Google Scholar 

  • Bhushan B (2011) Nanotribology and nanomechanics I & II—an introduction, 3rd edn. Springer-Verlag, Heidelberg, Germany

    Book  Google Scholar 

  • Bhushan B (2013a) Principles and applications of Tribology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Bhushan B (2013b) Introduction to Tribology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Bhushan B (2016) Encyclopedia of nanotechnology, 2nd edn. Springer International, Switzerland

    Book  Google Scholar 

  • Bhushan B, Blackman GS (1991) Atomic force microscopy of magnetic rigid disks and sliders and its applications to Tribology, ASME. J Tribol 113:452–458

    Article  Google Scholar 

  • Bhushan B, Dandavate C (2000) Thin-film friction and adhesion studies using atomic force Microscopy. J Appl Phys 87:1201–1210

    Article  Google Scholar 

  • Bhushan B, Goldade AV (2000a) Measurements and analysis of surface potential change during wear of single crystal silicon (100) at ultralow loads using kelvin probe Microscopy. Appl Surf Sci 157:373–381

    Article  Google Scholar 

  • Bhushan B, Goldade AV (2000b) Kelvin probe microscopy measurements of surface potential change under wear at low loads. Wear 244:104–117

    Article  Google Scholar 

  • Bhushan B, Gupta BK (1991) Handbook of Tribology: Materials, Coatings and Surface Treatments, McGraw-Hill, New York (reprinted Krieger, Malabar Florida, 1997)

    Google Scholar 

  • Bhushan B, Kasai T (2004) A surface topography-independent friction measurement technique using torsional resonance mode in an AFM. Nanotechnology 15:923–935

    Article  Google Scholar 

  • Bhushan B, Koinkar VN (1994a) Tribological studies of silicon for magnetic recording applications. J Appl Phys 75:5741–5746

    Article  Google Scholar 

  • Bhushan B, Koinkar VN (1994b) Nanoindentation hardness measurements using atomic force microscopy. Appl Phys Lett 64:1653–1655

    Article  Google Scholar 

  • Bhushan B, Kulkarni AV (1996) Effect of normal load on microscale friction measurements. Thin Solid Films 278:49–56, 293, 333

    Google Scholar 

  • Bhushan B, Li X (2003) Nanomechanical characterisation of solid surfaces and thin films (invited). Intern Mat Rev 48:125–164

    Article  Google Scholar 

  • Bhushan B, Liu H (2001) Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B 63:245412–1 to 245412-11

    Google Scholar 

  • Bhushan B, Nosonovsky M (2003) Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (Microslip). Acta Mater 51:4331–4345

    Article  Google Scholar 

  • Bhushan B, Nosonovsky M (2004a) Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing). Acta Mater 52:2461–2474

    Article  Google Scholar 

  • Bhushan B, Nosonovsky M (2004b) Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology 15:749–761

    Article  Google Scholar 

  • Bhushan B, Qi J (2003) Phase contrast imaging of nanocomposites and molecularly-thick lubricant films in magnetic media. Nanotechnology 14:886–895

    Article  Google Scholar 

  • Bhushan B, Ruan J (1994) Atomic-scale friction measurements using friction force microscopy: part II—application to magnetic media, ASME. J. Trib. 116:389–396

    Article  Google Scholar 

  • Bhushan B, Sundararajan S (1998) Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater 46:3793–3804

    Article  Google Scholar 

  • Bhushan B, Venkatesan S (1993) Mechanical and tribological properties of silicon for micromechanical applications: a review. Adv Info Storage Syst 5:211–239

    Google Scholar 

  • Bhushan B, Ruan J, Gupta BK (1993) A Scanning Tunnelling Microscopy Study of Fullerene Films. J Phys D Appl Phys 26:1319–1322

    Article  Google Scholar 

  • Bhushan B, Koinkar VN, Ruan J (1994) Microtribology of Magnetic Media. Proc Inst Mech. Eng Part J J Eng Tribol 208:17–29

    Article  Google Scholar 

  • Bhushan B, Israelachvili JN, Landman U (1995a) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  Google Scholar 

  • Bhushan B, Kulkarni AV, Koinkar VN, Boehm M, Odoni L, Martelet C, Belin M (1995b) Microtribological characterization of self-assembled and langmuir-blodgett monolayers by atomic and friction force microscopy. Langmuir 11:3189–3198

    Article  Google Scholar 

  • Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT (1996) Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy. Philos Mag 74:1117–1128

    Article  Google Scholar 

  • Bhushan B, Mokashi PS, Ma T (2003) A new technique to measure poisson’s ratio of ultrathin polymeric films using atomic force microscopy. Rev Sci Instrum 74:1043–1047

    Article  Google Scholar 

  • Bhushan B, Kasai T, Nguyen CV, Meyyappan M (2004a) Multiwalled carbon nanotube AFM Probes for surface characterization of micro/nanostructures. Microsys Technol 10:633–639

    Article  Google Scholar 

  • Bhushan B, Liu H, Hsu SM (2004b) Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects ASME. J Tribol 126:583–590

    Article  Google Scholar 

  • Bhushan B, Kasai T, Kulik G, Barbieri L, Hoffmann P (2005) AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS. Ultramicroscopy 105:176–188

    Article  Google Scholar 

  • Bhushan B, Hansford D, Lee KK (2006) Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J Vac Sci Technol A 24:1197–1202

    Article  Google Scholar 

  • Bhushan B, Cichomski M, Tao Z, Tran NT, Ethen T, Merton C, Jewett RE (2007) Nanotribological characterization and lubricant degradation studies of metal-film magnetic tapes using novel lubricants, ASME. J Tribol 129:621–627

    Article  Google Scholar 

  • Bhushan B, Palacio M, Kinzig B (2008) AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J Colloid Inter Sci 317:275–287

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Binnig G, Gerber Ch, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3:1281–1286

    Article  Google Scholar 

  • Bobji MS, Bhushan B (2001a) Atomic force microscopic study of the micro-cracking of magnetic thin films under tension. Scripta Mater 44:37–42

    Article  Google Scholar 

  • Bobji MS, Bhushan B (2001b) In-situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy. J Mater Res 16:844–855

    Article  Google Scholar 

  • Bowden FP, Tabor D (1950) The friction and lubrication of solids, part 1. Clarendon Press, Oxford, U.K

    MATH  Google Scholar 

  • Chen N, Bhushan B (2005) Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode in an AFM. J Micros 220:96–112

    Article  Google Scholar 

  • DeRose JA, Hoque E, Bhushan B, Mathieu HJ (2008) Characterization of perfluorodecanote self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers. Surf Sci 602:1360–1367

    Article  Google Scholar 

  • DeVecchio D, Bhushan B (1997) Localized surface elasticity measurements using an atomic force microscope. Rev Sci Instrum 68:4498–4505

    Article  Google Scholar 

  • DeVecchio D, Bhushan B (1998) Use of a nanoscale kelvin probe for detecting wear precursors. Rev Sci Instrum 69:3618–3624

    Article  Google Scholar 

  • Field JE (ed) (1992) The properties of natural and synthetic diamond. Academic Press, London

    Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM (1994) Functional group imaging by chemical force microscopy. Science 265:2071–2074

    Article  Google Scholar 

  • Fusco C, Fasolino A (2005) Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional tomlinson model. Phys Rev B 71:045413

    Article  Google Scholar 

  • Garcia R, Tamayo J, Calleja M, Garcia F (1998) Phase contrast in tapping-mode scanning force microscopy. Appl Phys A 66:S309–S312

    Article  Google Scholar 

  • Gnecco E, Bennewitz R, Gyalog T, Loppacher Ch, Bammerlin M, Meyer E, Guntherodt H-J (2000) Velocity dependence of atomic friction. Phys Rev Lett 84:1172–1175

    Article  Google Scholar 

  • Guntherodt HJ, Anselmetti D, Meyer E (1995) Forces in scanning probe methods, vol E286. Kluwer Academic Pub, Dordrecht, Netherlands

    Book  Google Scholar 

  • Helman JS, Baltensperger W, Holyst JA (1994) Simple-model for dry friction. Phys Rev B 49:3831–3838

    Article  Google Scholar 

  • Hoque E, DeRose JA, Hoffmann P, Mathieu HJ, Bhushan B, Cichomski M (2006a) Phosphonate self-assembled monolayers on aluminum surfaces. J Chem Phys 124:174710

    Article  Google Scholar 

  • Hoque E, DeRose JA, Kulik G, Hoffmann P, Mathieu HJ, Bhushan B (2006b) Alkylphosphonate modified aluminum oxide surfaces. J Phys Chem B 110:10855–10861

    Article  Google Scholar 

  • Hoque E, DeRose JA, Hoffmann P, Bhushan B, Mathieu HJ (2007a) Alkylperfluorosilane self-assembled monolayers on aluminum: a comparison with alkylphosphonate self-assembled monolayers. J Phys Chem C 111:3956–3962

    Article  Google Scholar 

  • Hoque E, DeRose JA, Hoffmann P, Bhushan B, Mathieu HJ (2007b) Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilazation of copper. J Chem Phys 126:114706

    Article  Google Scholar 

  • Hoque E, DeRose JA, Bhushan B, Mathieu HJ (2008) Self-assembled monolayers on aluminum and copper oxide surfaces: surface and interface characteristics, nanotribological properties, and chemical stability. In: Bhushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods vol IX—characterization. Springer, Heidelberg, pp 235–281

    Google Scholar 

  • Hoque E, DeRose JA, Bhushan B, Hipps KW (2009) low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces. Ultramicroscopy 109:1015–1022

    Article  Google Scholar 

  • Kasai T, Bhushan B, Huang L, Su C (2004) Topography and phase imaging using the torsional resonance mode. Nanotechnology 15:731–742

    Article  Google Scholar 

  • Kasai T, Bhushan B, Kulik G, Barbieri L, Hoffmann P (2005) Nanotribological study of perfluorosilane sams for anti-stiction and low wear. J Vac Sci Technol B 23:995–1003

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1996a) Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks. J Appl Phys 79:8071–8075

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1996b) Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J Vac Sci Technol A 14:2378–2391

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1996c) Microtribological studies of Al2O3–TiC, polycrystalline and single-crystal Mn-Zn Ferrite and SiC head slider materials. Wear 202:110–122

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1997a) Microtribological properties of hard amorphous carbon protective coatings for thin film magnetic disks and heads. Proc Inst Mech Eng Part J: J Eng Tribol 211:365–372

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1997b) Effect of scan size and surface roughness on microscale friction measurements. J Appl Phys 81:2472–2479

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1997c) Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy. J Mater Res 12:3219–3224

    Article  Google Scholar 

  • Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O (1999) Pulse force mode: a new method for the investigation of surface properties. Surf Interface Anal 27:336–340

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1996a) Nanoscale mechanical property measurements using modified atomic force microscopy. Thin Solid Films 290–291:206–210

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1996b) Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy. Mater Lett 29:221–227

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1997) Nanoindentation measurement of amorphous carbon coatings. J Mater Res 12:2707–2714

    Article  Google Scholar 

  • Lee DT, Pelz JP, Bhushan B (2002) Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance. Rev Sci Instr 73:3523–3533

    Google Scholar 

  • Lee KK, Bhushan B, Hansford D (2005) Nanotribological characterization of perfluoropolymer thin films for biomedical micro/nanoelectromechanical systems applications. J Vac Sci Technol A 23:804–810

    Article  Google Scholar 

  • Li WB, Henshall JL, Hooper RM, Easterling KE (1991) The Mechanism of Indentation Creep. Acta Metall Mater 39:3099–3110

    Article  Google Scholar 

  • Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  • Lim SC, Ashby MF (1987) Wear mechanism maps. Acta Metall 35:1–24

    Article  Google Scholar 

  • Lim SC, Ashby MF, Brunton JH (1987) Wear-rate transitions and their relationship to wear mechanisms. Acta Metall 35:1343–1348

    Article  Google Scholar 

  • Liu H, Bhushan B (2002) Investigation of nanotribological properties of self-assembled monolayers with Alkyl and Biphenyl spacer chains. Ultramicroscopy 91:185–202

    Article  Google Scholar 

  • Liu H, Bhushan B (2003a) Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97:321–340

    Article  Google Scholar 

  • Liu H, Bhushan B (2003b) Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus. J Vac Sci Technol A 21:1528–1538

    Article  Google Scholar 

  • Liu H, Bhushan B, Eck W, Staedtler V (2001) Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy. J Vac Sci Technol A 19:1234–1240

    Article  Google Scholar 

  • Lodge RA, Bhushan B (2007) Effect of physical wear and triboelectric interaction on surface charges measured by kelvin probe microscopy. J Colloid Interf Sci 310:321–330

    Article  Google Scholar 

  • Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2:103–106

    Article  Google Scholar 

  • Marti O, Krotil H-U (2001) Dynamic friction measurement with the scanning force microscope, fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer Academic Publishers, Dordrecht, pp 121–135

    Book  Google Scholar 

  • Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942–1945

    Article  Google Scholar 

  • Meyer E, Overney R, Luthi R, Brodbeck D, Howald L, Frommer J, Guntherodt HJ, Wolter O, Fujihira M, Takano T, Gotoh Y (1992) Friction force microscopy of mixed langmuir-blodgett films. Thin Solid Films 220:132–137

    Article  Google Scholar 

  • Nagpure SC, Bhushan B, Babu SS (2011) Surface potential measurement of aged li-ion batteries using kelvin probe microscopy. J Power Sources 196:1508–1512

    Article  Google Scholar 

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    Article  MATH  Google Scholar 

  • Nosonovsky M, Bhushan B (2005) Scale effects in dry friction during multiple-asperity contact, ASME. J Tribol 127:37–46

    Article  Google Scholar 

  • Palacio M, Bhushan B (2007a) Surface potential and resistance measurements for detecting wear of chemically-bonded and unbonded molecularly-thick perfluoropolyether lubricant films using atomic force microscopy. J Colloid Interf Sci 315:261–269

    Google Scholar 

  • Palacio M, Bhushan B (2007b) Wear detection of candidate MEMS/NEMS lubricant films using atomic force microscopy-based surface potential measurements. Scripta Mater 57:821–824

    Article  Google Scholar 

  • Palacio M, Bhushan B (2008) Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv Mater 20:1194–1198

    Article  Google Scholar 

  • Palacio M, Bhushan B (2009) Molecularly thick dicationic liquid films for nanolubrication. J Vac Sci Technol, A 27:986–995

    Article  Google Scholar 

  • Palacio M, Bhushan B (2010) Normal and lateral force calibration techniques for afm cantilevers. Crit Rev Solid State Mater Sci 35:73–104; 36:261

    Google Scholar 

  • Persson BNJ, Tosatti E (1996) PHYSICS OF SLIDING FRiction, vol E311. Kluwer Academic Pub, Dordrecht

    Book  Google Scholar 

  • Rabe U, Janser K, Arnold W (1996) vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev Sci Instrum 67:3281–3293

    Article  Google Scholar 

  • Reinstaedtler M, Rabe U, Scherer V, Hartmann U, Goldade A, Bhushan B, Arnold W (2003) on the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances. Appl Phys Lett 82:2604–2606

    Article  Google Scholar 

  • Reinstaedtler M, Rabe U, Goldade A, Bhushan B, Arnold W (2005a) investigating ultra-thin lubricant layers using resonant friction force microscopy. Tribol Inter 38:533–541

    Article  Google Scholar 

  • Reinstaedtler M, Kasai T, Rabe U, Bhushan B, Arnold W (2005b) Imaging and measurement of elasticity and friction using the TR mode. J Phys D Appl Phys 38:R269–R282

    Article  Google Scholar 

  • Ruan J, Bhushan B (1993) Nanoindentation studies of fullerene films using atomic force microscopy. J Mater Res 8:3019–3022

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994a) Atomic-scale friction measurements using friction force microscopy: part I—general principles and new measurement techniques, ASME. J Tribol 116:378–388

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994b) Atomic-scale and microscale friction of graphite and diamond using friction force microscopy. J Appl Phys 76:5022–5035

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994c) Frictional behavior of highly oriented pyrolytic graphite. J Appl Phys 76:8117–8120

    Article  Google Scholar 

  • Scherer V, Bhushan B, Rabe U, Arnold W (1997) Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies. IEEE Trans Magn 33:4077–4079

    Article  Google Scholar 

  • Scherer V, Arnold W, Bhushan B (1998) Active friction control using ultrasonic vibration. In: Bhushan B (ed) Tribology issues and opportunities in MEMS. Dordrecht, Kluwer Academic Pub, pp 463–469

    Chapter  Google Scholar 

  • Scherer V, Arnold W, Bhushan B (1999) Lateral force microscopy using acoustic friction force microscopy. Surf Interface Anal 27:578–587

    Article  Google Scholar 

  • Schwarz UD, Zwoerner O, Koester P, Wiesendanger R (1997) Friction force spectroscopy in the low-load regime with well-defined tips. In: Bhushan B (ed) Micro/Nanotribology and its applications. Kluwer Academic, Dordrecht, pp 233–238

    Chapter  Google Scholar 

  • Scott WW, Bhushan B (2003) Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films. Ultramicroscopy 97:151–169

    Article  Google Scholar 

  • Seshadri IP, Bhushan B (2008a) In-situ tensile deformation characterization of human hair with atomic force microscopy. Acta Mater 56:774–781

    Article  Google Scholar 

  • Seshadri IP, Bhushan B (2008b) Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy. Acta Mater 56:3585–3597

    Article  Google Scholar 

  • Seshadri IP, Bhushan B (2008c) Effect of rubbing load on nanoscale charging characteristics of human hair characterized by AFM based kelvin probe. J Colloid Interf Sci 325:580–587

    Article  Google Scholar 

  • Singer IL, Pollock HM (1992) Fundamentals of friction: macroscopic and microscopic processes, vol E220. Kluwer Academic Pub, Dordrecht

    Book  Google Scholar 

  • Song Y, Bhushan B (2005) Quantitative extraction of in-plane surface properties using torsional resonance mode in atomic force microscopy. J Appl Phys 87:83533

    Article  Google Scholar 

  • Stifter T, Marti O, Bhushan B (2000) Theoretical investigation of the distance dependence of capillary and van der waals forces in scanning probe microscopy. Phys Rev B 62:13667–13673

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2000) Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J Appl Phys 88:4825–4831

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2001) Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings. J Mater Res 16:75–84

    Article  Google Scholar 

  • Tamayo J, Garcia R (1996) Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12:4430–4435

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2004a) Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology 15:1561–1570

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2004b) In situ study of nano-cracking of multilayered magnetic tapes under monotonic and fatigue loading using an AFM. Ultramicroscopy 100:359–373

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005a) A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J Phys D Appl Phys 38:764–773

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005b) Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16:2309–2324

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005c) Durability studies of Micro/Nanoelectromechanical system materials, coatings, and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope. J Vac Sci Technol, A 23:830–835

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005d) Nanoscale friction-induced phase transformation of diamond-like carbon. Scripta Materiala 52:751–755

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005e) Identifying Materials with Low Friction and Adhesion for Nanotechnology Applications. Appl. Phys. Lett 86:061906. Nature Mater. Nanozone, 17 Feb 2005

    Google Scholar 

  • Tambe NS, Bhushan B (2005f) Nanoscale friction mapping. Appl Phys Lett 86:193102–1 to 3

    Google Scholar 

  • Tambe NS, Bhushan B (2005g) Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities. Tribol Lett 20:83–90

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2005h) Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates. Nanotechnology 16:1549–1558

    Article  Google Scholar 

  • Tambe NS, Bhushan B (2008) Nanoscale friction and wear maps. Philos Trans R Soc A 366:1405–1424

    Article  Google Scholar 

  • Tang W, Bhushan B, Ge S (2010) Triboelectrification studies of skin and skin cream using kelvin probe microscopy. J Vac Sci Technol, A 28:1018–1028

    Article  Google Scholar 

  • Tao Z, Bhushan B (2005a) Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants. Wear 259:1352–1361

    Article  Google Scholar 

  • Tao Z, Bhushan B (2005b) Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films. Langmuir 21:2391–2399

    Article  Google Scholar 

  • Tao Z, Bhushan B (2006a) Surface modification of AFM silicon probes for adhesion and wear reduction. Trib Lett 21:1–16

    Article  Google Scholar 

  • Tao Z, Bhushan B (2006b) A new technique for studying nanoscale friction at sliding velocities up to 200 mm/s using atomic force microscope. Rev Sci Instrum 77:103705

    Article  Google Scholar 

  • Tao Z, Bhushan B (2007) Velocity dependence and rest time effect in nanoscale friction of ultrathin films at high sliding velocities. J Vac Sci Technol, A 25:1267–1274

    Article  Google Scholar 

  • Tomanek D, Zhong W, Thomas H (1991) Calculation of an atomically modulated friction force in atomic force microscopy. Europhys Lett 15:887–892

    Article  Google Scholar 

  • Tomlinson GA (1929) A molecular theory of friction. Phil Mag Ser 7:905–939

    Article  Google Scholar 

  • Yamanaka K, Tomita E (1995) Lateral force modulation atomic force microscope for selective imaging of friction forces. Jpn J Appl Phys 34:2879–2882

    Article  Google Scholar 

  • Zaghloul U, Bhushan B, Coccetti F, Pons P, Plana R (2011) Kelvin probe force microscopy based characterization techniques applied for electrostatic MEMS and thin dielectric films to investigate the dielectric substrate charging phenomena. J Vac Sci Technol, A 29:051101

    Article  Google Scholar 

  • Zhao X, Bhushan B (1998) Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads. Wear 223:66–78

    Article  Google Scholar 

  • Zworner O, Holscher H, Schwarz UD, Wiesendanger R (1998) The Velocity Dependence of Frictional Forces in Point-Contact Friction. Appl Phys A.: MaterSci Process 66:S263–S267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bhushan, B., Eminent, O., Winbigler, H.D. (2017). Nanotribology, Nanomechanics and Materials Characterization Studies Using Scanning Probe Microscopy. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-51433-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51433-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51432-1

  • Online ISBN: 978-3-319-51433-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics