Skip to main content

Computer Simulations of Nanometer-Scale Indentation and Friction

  • Chapter
  • First Online:
Nanotribology and Nanomechanics

Abstract

Engines and other machines with moving parts are often limited in their design and operational lifetime by friction and wear. This limitation has motivated the study of fundamental tribological processes with the ultimate aim of controlling and minimizing their impact. The recent development of miniature apparatus, such as microelectromechanical systems and nanometer-scale devices, has increased interest in atomic-scale friction , which has been found to, in some cases, be due to mechanisms that are significantly distinct from the mechanisms that dominate in macroscale friction. Presented in this chapter is a review of computational studies of tribological processes at the atomic and nanometer scale. In particular, a review of the findings of computational studies of nanometer-scale indentation, friction, and lubrication is presented, along with a review of the salient computational methods that are used in these studies, and the conditions under which they are best applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell GC (1985) Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B 31(10):6184–6196

    Article  Google Scholar 

  • Ackland GJ, Tichy G, Vitek V, Finnis MW (1987) Simple N-body potentials for the noble-metals and nickel. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 56(6):735–756

    Google Scholar 

  • Adams DJ (1975) Grand canonical ensemble Monte-Carlo for a Lennard-Jones fluid. Mol Phys 29(1):307–311

    Article  Google Scholar 

  • Adelman SA (1980) Generalized Langevin equations and many-body problems in chemical dynamics. Adv Chem Phys 44:143–253

    Google Scholar 

  • Adelman SA, Doll JD (1976) Generalized Langevin equation approach for atom-solid-surface scattering—general formulation for classical scattering off harmonic solids. J Chem Phys 64(6):2375–2388

    Article  Google Scholar 

  • Agrait N, Rubio G, Vieira S (1996) Plastic deformation in nanometer scale contacts. Langmuir 12(19):4505–4509

    Article  Google Scholar 

  • Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57(3):316–318

    Article  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Allers W, Schwarz UD, Gensterblum G, Wiesendanger R (1995) Low-load friction behavior of epitaxial C60 monolayers. Z Phys B 99:1–2

    Article  Google Scholar 

  • Barrena E, Ocal C, Salmeron M (2001) A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111). Surf Sci 482:1216–1221

    Article  Google Scholar 

  • Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5):2727–2742

    Article  Google Scholar 

  • Baskes MI, Nelson JS, Wright AF (1989a) Semiempirical modified embedded atom potentials for silicon and germanium. Phys Rev B 40(9):6085–6100

    Article  Google Scholar 

  • Baskes MI, Nelson JS, Wright AF (1989b) Semiempirical modified embedded-atom potentials for silicon and germanium. Phys Rev B 40(9):6085–6100

    Article  Google Scholar 

  • Belak J, Stowers IF (1990) Proceedings of the American society for precision engineering, p 76

    Google Scholar 

  • Berman AD, Ducker WA, Israelachvili JN (1996) Origin and characterization of different stick-slip friction mechanisms. Langmuir 12(19):4559–4563

    Article  Google Scholar 

  • Bhushan B, Gupta BK, Van Cleef GW, Capp C, Coe JV (1993a) Sublimed C60 films for tribology. Appl Phys Lett 62(25):3253–3255

    Article  Google Scholar 

  • Bhushan B, Gupta BK, Vancleef GW, Capp C, Coe JV (1993b) Fullerene (C-60) films for solid lubrication. Tribol Trans 36(4):573–580

    Article  Google Scholar 

  • Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology—friction, wear and lubrication at the atomic-scale. Nature 374(6523):607–616

    Article  Google Scholar 

  • Biersack JP, Ziegler J, Littmack U (1985) The stopping and range of ions in solids. Pergamon, Oxford

    Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  • Bolshakov A, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations. J Mater Res 11(3):760–768

    Article  Google Scholar 

  • Bowden FP, Tabor D (1964) The friction and lubrication of solids, part 2. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Brenner DW (1989a) Tersoff-type potentials for carbon, hydrogen, and oxygen. Mater Res Soc Symp Proc 141:59–65

    Article  Google Scholar 

  • Brenner DW (1989b) Relationship between the embedded-atom method and tersoff potentials. Phys Rev Lett 63(9):1022

    Article  Google Scholar 

  • Brenner DW (1990a) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471

    Article  Google Scholar 

  • Brenner DW (1990b) Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys Rev B 42(15):9458–9471

    Article  Google Scholar 

  • Brenner DW (2000) The art and science of an analytic potential. Phys Status Solidi B 217:23–40

    Article  Google Scholar 

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Google Scholar 

  • Brenner DW, Irving DL, Kingon AI, Krim J (2007) Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems. Langmuir 23(18):9253–9257

    Article  Google Scholar 

  • Brukman MJ, Nemanich GGRJ, Harrison JA (2008) Temperature dependence of single asperity diamond-diamond friction elucidated using AFM and MD simulations. J Phys Chem C (in press)

    Google Scholar 

  • Buldum A, Ciraci S (1997) Atomic-scale study of dry sliding friction. Phys Rev B 55(4):2606–2611

    Article  Google Scholar 

  • Buldum A, Lu JP (1999) Atomic scale sliding and rolling of carbon nanotubes. Phys Rev Lett 83(24):5050–5053

    Article  Google Scholar 

  • Burnham NA, Colton RJ (1989) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Vac Sci Technol A 7:2906–2913

    Article  Google Scholar 

  • Burnham NA, Colton RJ (1993) Force microscopy. In: Bonnell DA (eds) Scanning tunneling microscopy and spectroscopy: theory, techniques, and applications. VCH Publishers, New York, pp 191–249

    Google Scholar 

  • Burnham NA, Dominguez DD, Mowery RL, Colton RJ (1990) Probing the surface forces of monolayer films with an atomic-force microscope. Phys Rev Lett 64(16):1931–1934

    Article  Google Scholar 

  • Burnham NA, Colton RJ, Pollock HM (1993) Work-function anisotropies as an origin of long-range surface forces. Phys Rev Lett 69:144–147

    Article  Google Scholar 

  • Cagin T, Che JW, Gardos MN, Fijany A, Goddard WA (1999) Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application. Nanotechnology 10(3):278–284

    Article  Google Scholar 

  • Cai J, Wang JS (2001) Friction between a Ge tip and the (001)-2 × 1 surface: a molecular-dynamics simulation. Phys Rev B 6411(11):113313

    Article  Google Scholar 

  • Cai J, Wang J-S (2002) Friction between Si tip and (001)-2 × 1 surface: a molecular dynamics simulation. Comput Phys Commun 147:145–148

    Article  MATH  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  Google Scholar 

  • Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97(4):1163–1194

    Article  Google Scholar 

  • Carpick RW, Agrait N, Ogletree DF, Salmeron M (1996a) Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12(13):3334–3340

    Article  Google Scholar 

  • Carpick RW, Agrait N, Ogletree DF, Salmeron M (1996b) Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope (vol 14, pg 1289, 1996). J Vac Sci Technol B 14(4):2772

    Article  Google Scholar 

  • Chandross M, Grest GS, Stevens MJ (2002) Friction between alkylsilane monolayers: molecular simulation of ordered monolayers. Langmuir 18:8392–8399

    Article  Google Scholar 

  • Chandross M, Webb EB III, Stevens MJ, Grest GS (2004) Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys Rev Lett 93:166103

    Article  Google Scholar 

  • Chandross M, Lorenz CD, Stevens MJ, Grest GS (2008) Simulations of nanotribology with realistic probe tip models. Langmuir 24(4):1240–1246

    Article  Google Scholar 

  • Chateauneuf GM, Mikulski PT, Gao GT, Harrison JA (2004) Compression- and shear-induced polymerization in model diacetylene-containing monolayers. J Phys Chem B 108(43):16626–16635

    Article  Google Scholar 

  • Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nano Tech 11:173–180

    Google Scholar 

  • Cho K, Joannopoulos JD (1995) Mechanical hysteresis on an atomic-scale. Surf Sci 328(3):320–324

    Article  Google Scholar 

  • Clarke DR, Kroll MC, Kirchner PD, Cook RF, Hockey BJ (1988) Amorphization and conductivity of silicon and germanium induced by indentation. Phys Rev Lett 60:2156–2159

    Article  Google Scholar 

  • Costakramer JL, Garcia N, Garciamochales P, Serena PA (1995) Nanowire formation in macroscopic metallic contacts—quantum-mechanical conductance tapping a table top. Surf Sci 342(1–3):L1144–L1149

    Article  Google Scholar 

  • Cramer C (2004) Essentials of computational chemistry, theories and models, 2nd edn. John Wiley & Sons, West Sussex, England

    Google Scholar 

  • Curry JE, Zhang FS, Cushman JH, Schoen M, Diestler DJ (1994) Transient coexisting nanophases in ultrathin films confined between corrugated walls. J Chem Phys 101(12):10824–10832

    Article  Google Scholar 

  • D’Alessandro M, D’Abramo M, Brancato G, Di Nola A, Amadei A (2002) Statistical mechanics and thermodynamics of simulated ionic solutions. J Phys Chem B 106(45):11843–11848

    Article  Google Scholar 

  • Daw MS, Baskes MI (1983) Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285–1288

    Article  Google Scholar 

  • Dayo A, Alnasrallah W, Krim J (1998) Superconductivity-dependent sliding friction. Phys Rev Lett 80(8):1690–1693

    Article  Google Scholar 

  • de la Fuente OR, Zimmerman JA, Gonzalez MA, de la Figuera J, Hamilton JC, Pai WW, Rojo JM (2002) Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys Rev Lett 88(3):036101

    Article  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov Y (1975) Effect of contact deformations on adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  Google Scholar 

  • Dickrell PL, Sinnott SB, Hahn DW, Raravikar NR, Schadler LS, Ajayan PM, Sawyer WG (2005) Frictional anisotropy of oriented carbon nanotube surfaces. Trib Lett 18(1):59–62

    Article  Google Scholar 

  • Dowson D (1979) History of tribology. Longman, London, p 215

    Google Scholar 

  • Dyson AJ, Smith PV (1996) Extension of the Brenner empirical interactomic potential to C–Si–H. Surf Sci 355:140–150

    Article  Google Scholar 

  • Enachescu M, van den Oetelaar RJA, Carpick RW, Ogletree DF, Flipse CFJ, Salmeron M (1998) Atomic force microscopy study of an ideally hard contact: The diamond (111) tungsten carbide interface. Phys Rev Lett 81(9):1877–1880

    Article  Google Scholar 

  • Enke K (1981) Some new results on the fabrication of and the mechanical, electrical and optical-properties of I-carbon layers. Thin Solid Films 80(1–3):227–234

    Article  Google Scholar 

  • Enke K, Dimigen H, Hubsch H (1980) Frictional-properties of diamond-like carbon layers. Appl Phys Lett 36(4):291–292

    Article  Google Scholar 

  • Erdemir A, Donnet C (2000) Tribology of diamond, diamond-like carbon, and related films. In: Bhushan B (ed) Modern tribology handbook. CRC Press, Boca Raton, FL, pp 871–908

    Google Scholar 

  • Erlandsson R, Hadziioannou G, Mate CM, Mcclelland GM, Chiang S (1988) Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J Chem Phys 89(8):5190–5193

    Article  Google Scholar 

  • Falvo MR, Taylor RM, Helser A, Chi V, Brooks FP, Washburn S, Superfine R (1999) Nanomter-scale rolling and sliding of carbon nanotubes. Nature 397:236–238

    Article  Google Scholar 

  • Falvo MR, Steele J, Taylor RM II, Superfine R (2000) Gearlike rolling motion mediated by commensurate contact: carbon nanotubes on HOPG. Phys Rev B 62(16):R10664–R10667

    Google Scholar 

  • Fang T-H, Weng C-I, Chang J-G (2002) Molecular dynamics simulation of nano-lithography process using atomic force microscopy. Surf Sci 501:138–147

    Article  Google Scholar 

  • Feng Z, Field JE (1991) Friction of diamond on diamond and chemical vapor-deposition diamond coatings. Surf Coat Technol 47(1–3):631–645

    Article  Google Scholar 

  • Finnis M (2003) Interatomic forces in condensed matter. Oxford series on materials. Oxford

    Google Scholar 

  • Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32:3409–3415

    Article  Google Scholar 

  • Fournel M, Lacaze E, Schott M (1996) Tip-surface interactions in STM experiments on Au(111): atomic-scale metal friction. Europhys Lett 34(7):489–494

    Article  Google Scholar 

  • Frenkel FC, Kontorova T (1938) On the theory of plastic demortation and twinning. Zh Eksp Teor Fiz 8:1340

    MATH  Google Scholar 

  • Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego

    MATH  Google Scholar 

  • Frenken JWM, Vanpinxteren HM, Kuipers L (1993) New views on surface melting obtained with STM and ion-scattering. Surf Sci 283(1–3):283–289

    Article  Google Scholar 

  • Fujisawa S, Sugawara Y, Ito S, Mishima S, Okada T, Morita S (1993) The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4(3):138–142

    Article  Google Scholar 

  • Fujisawa S, Sugawara Y, Morita S, Ito S, Mishima S, Okada T (1994) Study on the stick-slip phenomenon on a cleaved surface of the muscovite mica using an atomic-force lateral force microscope. J Vac Sci Technol B 12(3):1635–1637

    Article  Google Scholar 

  • Fujisawa S, Sugawara Y, Morita S (1996) Localized fluctuation of a two-dimensional atomic-scale friction. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 35(11):5909–5913

    Google Scholar 

  • Fusco C, Fasolino A (2005) Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model. Phys Rev B 71:045413

    Article  Google Scholar 

  • Gad-el-Hak M (ed) (2002) The MEMS handbook. The mechanical engineering handbook series. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gao GT, Mikulski PT, Harrison JA (2002) Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J Am Chem Soc 124(24):7202–7209

    Article  Google Scholar 

  • Gao GT, Mikulski PT, Chateauneuf GM, Harrison JA (2003) The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J Phys Chem B 107(40):11082–11090

    Article  Google Scholar 

  • Gao GT, Cannara RJ, Carpick RW, Harrison JA (2007) Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23(10):5394–5405

    Article  Google Scholar 

  • GarciaParajo M, Longo C, Servat J, Gorostiza P, Sanz F (1997) Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: contact and tapping modes. Langmuir 13(8):2333–2339

    Article  Google Scholar 

  • Garg A, Sinnott SB (1999) Molecular dynamics of carbon nanotubule proximal probe tip-surface contacts. Phys Rev B 60(19):13786–13791

    Article  Google Scholar 

  • Garg A, Han J, Sinnott SB (1998) Interactions of carbon-nanotubule proximal probe tips with diamond and graphene. Phys Rev Lett 81(11):2260–2263

    Article  Google Scholar 

  • Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Inc., Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Germann GJ, Cohen SR, Neubauer G, Mcclelland GM, Seki H, Coulman D (1993) Atomic scale friction of a diamond tip on diamond (100)-surface and (111)-surface. J Appl Phys 73(1):163–167

    Article  Google Scholar 

  • Glosli JN, Mcclelland GM (1993) Molecular-dynamics study of sliding friction of ordered organic monolayers. Phys Rev Lett 70(13):1960–1963

    Article  Google Scholar 

  • Glosli JN, Philpott MR, McClelland GM (1995) Molecular dynamics simulation of mechanical deformation of ultra-thin amorphous carbon films. Math Res Soc Symp Proc 383:431–435

    Article  Google Scholar 

  • Grabhorn H, Otto A, Schumacher D, Persson BNJ (1992) Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4. Surf Sci 264(3):327–340

    Article  Google Scholar 

  • Haile JM (1992) Molecular dynamics simulation: elementarymethods. John Wiley and Sons Inc., New York

    Google Scholar 

  • Hammerberg JE, Holian BL, Zhuo SJ (1995) Studies of sliding friction in compressed copper. In: Conference of the American physical society topical group on shock compression of condensed matter. AIP Press, Seattle, WA

    Google Scholar 

  • Harrison JA, Brenner DW (1994) Simulated tribochemistry—an atomic-scale view of the wear of diamond. J Am Chem Soc 116(23):10399–10402

    Article  Google Scholar 

  • Harrison JA, Brenner DW (1995) In: Bhushan B (ed) Handbook of micro/nanotechnology. Chemical Rubber, Boca Raton, FL

    Google Scholar 

  • Harrison JA, White CT, Colton RJ, Brenner DW (1992a) Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces. Surf Sci 271(1–2):57–67

    Article  Google Scholar 

  • Harrison JA, White CT, Colton RJ, Brenner DW (1992b) Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys Rev B 46(15):9700–9708

    Article  Google Scholar 

  • Harrison JA, Colton RJ, White CT, Brenner DW (1992c) Atomistic simulation of the nanoindentation of diamond and graphite surfaces. Math Res Soc Symp Proc 239:573–578

    Article  Google Scholar 

  • Harrison JA, Colton RJ, White CT, Brenner DW (1993a) Effect of atomic-scale surface-roughness on friction—a molecular-dynamics study of diamond surfaces. Wear 168(1–2):127–133

    Article  Google Scholar 

  • Harrison JA, White CT, Colton RJ, Brenner DW (1993b) Atomistic simulations of friction at sliding diamond interfaces. MRS Bull 18(5):50–53

    Article  Google Scholar 

  • Harrison JA, White CT, Colton RJ, Brenner DW (1993c) Effects of chemically-bound, flexible hydrocarbon species on the frictional-properties of diamond surfaces. J Phys Chem 97(25):6573–6576

    Article  Google Scholar 

  • Harrison JA, White CT, Colton RJ, Brenner DW (1995) Investigation of the atomic-scale friction and energy-dissipation in diamond using molecular-dynamics. Thin Solid Films 260(2):205–211

    Article  Google Scholar 

  • Harrison JA, Stuart SJ, Robertson DH, White CT (1997) Properties of capped nanotubes when used as SPM tips. J Phys Chem B 101(47):9682–9685

    Article  Google Scholar 

  • Harrison JA, Stuart SJ, Tutein AB (2001) A new, reactive potential energy function to study indentation and friction of C13 n-alkane monolayers. In: Frommer JE, Overney R (eds) Interfacial properties on the submicron scale. ACS Press, Washington, DC pp 216–229

    Google Scholar 

  • Harrison JA, Schall JD, Kinippenberg MT, Gao G, Mikulski PT (2008) Elucidating atomic-scale friction using molecular dynamics and specialized analysis techniques. J Phys Condens Matter (in press)

    Google Scholar 

  • Hasnaoui A, Derlet PM, Swygenhoven HV (2004) Interaction between dislocations and grain boundaries under an indentor—a molecular dynamics simulation. Acta Mater 52:2251–2258

    Article  Google Scholar 

  • Heermann DW (1986) Computer simulation methods in theoretical physics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Helman JS, Baltensperger W, Holyst JA (1994) Simple-model for dry friction. Phys Rev B 49(6):3831–3838

    Article  Google Scholar 

  • Heo S, Sinnott SB (2007) Effect of molecular interactions on carbon nanotube friction. J Appl Phys 102(6)

    Google Scholar 

  • Heo S-J, Sinnott SB, Brenner DW, Harrison JA (2005) Computational modeling of nanometer-scale tribology. In: Bhushan B (ed) Nanotribology and nanomechanics. Springer, Heidelberg, Germany

    Google Scholar 

  • Heo SJ, Jang I, Barry PR, Phillpot SR, Perry SS, Sawyer WG, Sinnott SB (2008) Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations. J Appl Phys 103(8)

    Google Scholar 

  • Hoover WG (1986) Molecular dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Hu Y (2008) Personal communication

    Google Scholar 

  • Irving DL, Brenner DW (2006) Diffusion on a self-assembled monolayer: molecular modeling of a bound plus mobile lubricant. J Phys Chem B 110(31):15426–15431

    Article  Google Scholar 

  • Israelachvili JN (1992a) Fundamentals of friction. In: Singer IL, Pollock HM (eds) Macroscopic and microscopic processes. Kluwer Academic Publishers, The Netherlands, p 351

    Chapter  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London, pp 169–172

    Google Scholar 

  • Iwasaki T, Miura H (2001) Molecular dynamics analysis of adhesion strength of interfaces between thin films. J Mater Res 16(6):1789–1794

    Article  Google Scholar 

  • Jang I, Sinnott SB (2004) Molecular dynamics simulations of the chemical modification of polystyrene through CxF +y beam deposition. J Phys Chem B 108:9656–9664

    Article  Google Scholar 

  • Jang I, Burris DL, Dickrell PL, Barry PR, Santos C, Perry SS, Phillpot SR, Sinnott SB, Sawyer WG (2007) Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J Appl Phys 102(12)

    Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge (Chapter 7)

    Google Scholar 

  • Johnson KL, Kendell K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313

    Article  Google Scholar 

  • Joyce SA, Thomas RC, Houston JE, Michalske TA, Crooks RM (1992) Mechanical relaxation of organic monolayer films measured by force microscopy. Phys Rev Lett 68(18):2790–2793

    Article  Google Scholar 

  • Kadau K, Germann TC, Lomdahl PS (2004) Large-scale molecular-dynamics simulation of 19 billion particles. Int J Mod Phys C 15:193–201

    Article  Google Scholar 

  • Kailer A, Nickel KG, Gogotsi YG (1999) Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J Raman Spectrosc 30:939–961

    Article  Google Scholar 

  • Kallman JS, Hoover WG, Hoover CG, Degroot AJ, Lee SM, Wooten F (1993) Molecular-dynamics of silicon indentation. Phys Rev B 47(13):7705–7709

    Article  Google Scholar 

  • Kawaguchi T, Matsukawa H (1997) Dynamical frictional phenomena in an incommensurate two-chain model. Phys Rev B 56:13932–13942

    Article  Google Scholar 

  • Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085–11088

    Article  Google Scholar 

  • Khurshudov A, Kato K (1995) Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic-force microscopy. J Vac Sci Technol B 13(5):1938–1944

    Article  Google Scholar 

  • Khurshudov AG, Kato K, Koide H (1996) Tribol Lett 2:345

    Article  Google Scholar 

  • Koike A, Yoneya M (1996) Molecular dynamics simulations of sliding friction of Langmuir-Blodgett monolayers. J Chem Phys 105(14):6060–6067

    Article  Google Scholar 

  • Kokubo S (1932) Science reports of the Tohoku Imperial University, vol 21, p 256

    Google Scholar 

  • Komanduri R, Chandrasekaran N (2000) Molecular dynamics simulation of atomic-scale friction. Phys Rev B 61:14007–14019

    Article  Google Scholar 

  • Komvopoulos K, Yan W (1997) Molecular dynamics simulation of single and repeated indentation. J Appl Phys 82(10):4823–4830

    Article  Google Scholar 

  • Kreer T, Müser MH, Binder K, Klein J (2001) Frictional drag mechanisms between polymer-bearing surfaces. Langmuir 17:7804–7813

    Article  MATH  Google Scholar 

  • Kreer T, Binder K, Müser MH (2003) Friction between polymer brushes in good solvent conditions: steady-state sliding versus transient behavior. Langmuir 19:7551–7559

    Article  Google Scholar 

  • Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts—a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086

    Article  Google Scholar 

  • Krim J (1995) Comments Cond Mat Phys 17:263

    Google Scholar 

  • Krim J (1996a) Friction at the atomic scale. Sci Am 275(4):74–80

    Article  Google Scholar 

  • Krim J (1996b) Atomic-scale origins of friction. Langmuir 12(19):4564–4566

    Article  Google Scholar 

  • Krim J, Solina DH, Chiarello R (1991) Nanotribology of a Kr monolayer—a quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett 66(2):181–184

    Article  Google Scholar 

  • Landman U, Luedtke WD (1991) Nanomechanics and dynamics of tip substrate interactions. J Vac Sci Technol B 9(2):414–423

    Article  Google Scholar 

  • Landman U, Luedtke WD, Nitzan A (1989a) Dynamics of tip substrate interactions in atomic force microscopy. Surf Sci 210(3):L177–L184

    Article  Google Scholar 

  • Landman U, Luedtke WD, Ribarsky MW (1989b) Structural and dynamical consequences of interactions in interfacial systems. J Vac Sci Tech A 7(4):2829–2839

    Article  Google Scholar 

  • Landman U, Luedtke WD, Burnham NA, Colton RJ (1990) Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954):454–461

    Article  Google Scholar 

  • Landman U, Luedtke WD, Ringer EM (1992) Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear 153(1):3–30

    Article  Google Scholar 

  • Landman U, Luedtke WD, Ouyang J, Xia TK (1993) Nanotribology and the stability of nanostructures. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 32(3B):1444–1462

    Google Scholar 

  • Landman U, Luedtke WD, Gao JP (1996) Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics. Langmuir 12(19):4514–4528

    Article  Google Scholar 

  • Lee B-J, Baskes MI (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62(13):8564–8567

    Article  Google Scholar 

  • Lee S, Shon YS, Colorado R, Guenard RL, Lee TR, Perry SS (2000) The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMS derived from normal and spiroalkanedithiols. Langmuir 16(5):2220–2224

    Article  Google Scholar 

  • Legoas SB, Giro R, Galvao DS (2004) Molecular dynamics simulations of C-60 nanobearings. Chem Phys Lett 386(4–6):425–429

    Article  Google Scholar 

  • Leng Y, Jiang S (2002) Dynamic simulations of adhesion and friction in chemical force microscopy. J Am Chem Soc 124:11764–11770

    Article  Google Scholar 

  • Li B, Clapp PC, Rifkin JA, Zhang XM (2001) Molecular dynamics simulation of stick-slip. J Appl Phys 90:3090–3094

    Article  Google Scholar 

  • Li S, Cao P, Ramon Colorado J, Yan X, Wenzl I, Shmakova OE, Graupe M, Lee TR, Perry SS (2005) Local packing environment strongly influences the frictional properties of mixed CH3– and CF3-terminated alkanethiol SAMs on Au(111). Langmuir 21:933–936

    Google Scholar 

  • Liang T, Sawyer WG, Perry SS, Sinnott SB, Phillpot SR (2008) First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys Rev B 77(10)

    Google Scholar 

  • Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD (2003) Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids 51:901–920

    Article  MATH  Google Scholar 

  • Lüthi R, Meyer E, Haefke H (1993) Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science 266:1979–1981

    Article  Google Scholar 

  • Lüthi R, Meyer E, Haefke H, Howald L, Gutmannsbauer W, Guntherodt HJ (1994a) Sled-type motion on the nanometer-scale—determination of dissipation and cohesive energies of C-60. Science 266(5193):1979–1981

    Article  Google Scholar 

  • Lüthi R, Haefke H, Meyer E, Howald L, Lang H-P, Gerth G, Güntherodt HJ (1994b) Frictional and atomic-scale study of C60 thin films by scanning force microscopy. Z Phys B 95:1–3

    Article  Google Scholar 

  • Manias E, Hadziioannou G, ten Brinke G (1996) Inhomogeneities in sheared ultrathin lubricating films. Langmuir 12(19):4587–4593

    Google Scholar 

  • Martyna GJ, Klein ML, Tuckerman M (1992) Nose-Hoover chains—the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  • Mate CM (1992) Atomic-force-microscope study of polymer lubricants on silicon surfaces. Phys Rev Lett 68(22):3323–3326

    Article  Google Scholar 

  • Mate CM (1993) Nanotribology studies of carbon surfaces by force microscopy. Wear 168(1–2):17–20

    Article  Google Scholar 

  • Mate CM (1995) Force microscopy studies of the molecular origins of friction and lubrication. IBM J Res Dev 39(6):617–627

    Article  Google Scholar 

  • Mate CM, Mcclelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945

    Article  Google Scholar 

  • McClelland GM, Glosli JN (1992) Friction at the atomic scale. In: Singer IL, Pollock HM (eds) Fundamentals of friction: macroscopic and microscopic processes. Kluwer Academic Publishers, Dordrecht, pp 405–422

    Google Scholar 

  • Meyer E (1998) Nanoscience: friction and rheology on the nanometer scale. World Scientific, New Jersey

    Book  Google Scholar 

  • Meyer E, Overney R, Brodbeck D, Howald L, Luthi R, Frommer J, Guntherodt HJ (1992) Friction and wear of Langmuir-Blodgett-films observed by friction force microscopy. Phys Rev Lett 69(12):1777–1780

    Article  Google Scholar 

  • Mikulski PT, Harrison JA (2001a) Periodicities in the properties associated with the friction of model self-assembled monolayers. Tribol Lett 10(1–2):29–35

    Article  Google Scholar 

  • Mikulski PT, Harrison JA (2001b) Packing-density effects on the friction of n-alkane monolayers. J Am Chem Soc 123(28):6873–6881

    Article  Google Scholar 

  • Mikulski PT, Gao G, Chateauneuf GM, Harrison JA (2005a) Contact forces at the sliding interface: mixed versus pure model alkane monolayers. J Chem Phys 122:024701

    Article  Google Scholar 

  • Mikulski PT, Herman LA, Harrison JA (2005b) Odd and even model self-assembled monolayers: Links between friction and structure. Langmuir 21(26):12197–12206

    Article  Google Scholar 

  • Minowa K, Sumino K (1992) Stress-induced amorphization of a silicon crystal by mechanical scratching. Phys Rev Lett 69(2):320–322

    Article  Google Scholar 

  • Miura K, Takagi T, Kamiya S, Sahashi T, Yamauchi M (2001a) Natural rolling of zigzag multiwalled carbon nanotubes on graphite. Nano Lett 1(3):161–163

    Article  Google Scholar 

  • Miura K, Ishikawa M, Kitanishi R, Yoshimura M, Ueda K, Tatsumi Y, Minami N (2001b) Bundle structure and sliding of single-walled carbon nanotubes observed by friction-force microscopy. Appl Phys Lett 78(6):832–834

    Article  Google Scholar 

  • Miura K, Kamiya S, Sasaki N (2003) C60 molecular bearings. Phys Rev Lett 90(5):055509

    Article  Google Scholar 

  • Miyake S, Takahashi S, Watanabe I, Yoshihara H (1987) Friction and wear behavior of hard carbon-films. Asle Trans 30(1):121–127

    Article  Google Scholar 

  • Morita S, Fujisawa S, Sugawara Y (1996) Spatially quantized friction with a lattice periodicity. Surf Sci Rep 23(1):1–41

    Article  Google Scholar 

  • Mulliah D, Kenny SD, Smith R (2004) Modeling of stick-slip phenomena using molecular dynamics. Phys Rev B 69(20):205407

    Article  Google Scholar 

  • Müser MH (2002a) Nature of mechanical instabilities and their effect on kinetic friction. Phys Rev Lett 89(22):224301

    Article  Google Scholar 

  • Müser MH (2002b) Towards an atomistic understanding of solid friction by computer simulations. Comput Phys Commun 146:54–62

    Article  MATH  Google Scholar 

  • Neitola R, Pakannen TA (2001) Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J Phys Chem B 105:1338–1343

    Article  Google Scholar 

  • Ni B, Sinnott SB (2001a) Tribological properties of carbon nanotube bundles. Surf Sci 487:87–96

    Article  Google Scholar 

  • Ni B, Sinnott SB (2001b) Mechanical and tribological properties of carbon nanotubes investigated with atomistic simulations. In: Nanotubes and related materials. Materials Research Society, Pittsburgh, PA, pp A17.3.1–A17.3.5

    Google Scholar 

  • Ni B, Lee K-H, Sinnott SB (2004) Development of a reactive empirical bond order potential for hydrocarbon-oxygen interactions. J Phys C Condens Matter 16:7261–7275

    Article  Google Scholar 

  • Niemienen JA, Sutton AP, Pethica JB, Kaski K (1992) Model Simul Math Sci Eng 1:83

    Article  Google Scholar 

  • Nieminen JA, Sutton AP, Pethica JB (1992) Static junction growth during frictional sliding of metals. Acta Metall Mater 40(10):2503–2509

    Article  Google Scholar 

  • Nose S (1984a) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  • Nose S (1984b) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  MathSciNet  Google Scholar 

  • Ohira T, Inoue Y, Murata K, Murayama J (2001) Magnetite scale cluster adhesion on metal oxide surfaces: atomistic simulation study. Appl Surf Sci 171:175–188

    Article  Google Scholar 

  • Ohmae N (1996) Field ion microscopy of microdeformation induced by metallic contacts. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 74(5):1319–1327

    Google Scholar 

  • Ohno K, Esfarjani K, Kawazoe Y (1999) Computational materials science from ab initio to Monte Carlo methods. Springer, New York

    Google Scholar 

  • Okita S, Miura K (2001) Molecular arrangement in C60 and C70 films on graphite and their nanotribological behavior. Nano Lett 1(2):101–103

    Article  Google Scholar 

  • Okita S, Ishikawa M, Miura K (1999) Nanotribological behavior of C60 films at an extremely low load. Surf Sci 442:L959–L963

    Article  Google Scholar 

  • Oppel GU (1964) Exp Mech 21:135

    Article  Google Scholar 

  • Ouyang Q, Okada K (1994) Nano-ball bearing effect of ultra-fine particles of cluster diamond. Appl Surf Sci 78:309–313

    Article  Google Scholar 

  • Overney RM, Meyer E, Frommer J, Brodbeck D, Luthi R, Howald L, Guntherodt HJ, Fujihira M, Takano H, Gotoh Y (1992) Friction measurements on phase-separated thin-films with a modified atomic force microscope. Nature 359(6391):133–135

    Article  Google Scholar 

  • Overney RM, Bonner T, Meyer E, Reutschi M, Luthi R, Howald L, Frommer J, Guntherodt HJ, Fujihara M, Takano H (1994a) Elasticity, wear, and friction properties of thin organic films observed with atomic-force microscopy. J Vac Sci Technol, B 12(3):1973–1976

    Article  Google Scholar 

  • Overney RM, Meyer E, Frommer J, Guntherodt HJ, Fujihira M, Takano H, Gotoh Y (1994b) Force microscopy study of friction and elastic compliance of phase-separated organic thin-films. Langmuir 10(4):1281–1286

    Article  Google Scholar 

  • Overney RM, Takano H, Fujihira M, Meyer E, Guntherodt HJ (1994c) Wear, friction and sliding speed correlations on langmuir-blodgett-films observed by atomic-force microscopy. Thin Solid Films 240(1–2):105–109

    Article  Google Scholar 

  • Padgett CW, Brenner DW (2005) A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Mol Simul 31(11):749–757

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  • Pasianot R, Savino EJ (1992) Embedded-atom-method interatomic potentials for hcp metals. Phys Rev B 45:12704–12710

    Article  Google Scholar 

  • Pasianot R, Farkas D, Savino EJ (1991) Empirical many-body interatomic potential for bcc transition metals. Phys Rev B 43:6952–6961

    Article  Google Scholar 

  • Perry MD, Harrison JA (1995) Universal aspects of the atomic-scale friction of diamond surfaces. J Phys Chem B 99:9960–9965

    Article  Google Scholar 

  • Perry MD, Harrison JA (1996a) Molecular dynamics studies of the frictional properties of hydrocarbon materials. Langmuir 12(19):4552–4556

    Article  Google Scholar 

  • Perry MD, Harrison JA (1996b) Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond. Thin Solid Films 291:211–215

    Article  Google Scholar 

  • Perry MD, Harrison JA (1997) Friction between diamond surfaces in the presence of small third-body molecules. J Phys Chem B 101(8):1364–1373

    Article  Google Scholar 

  • Persson BNJ (1993) Applications of surface resistivity to atomic scale friction, to the migration of hot adatoms, and to electrochemistry. J Chem Phys 98(2):1659–1672

    Article  Google Scholar 

  • Persson BNJ (1995) Theory of friction—dynamical phase-transitions in adsorbed layers. J Chem Phys 103(9):3849–3860

    Article  Google Scholar 

  • Persson BNJ (1997) Theory of friction: friction dynamics for boundary lubricated surfaces. Phys Rev B 55(12):8004–8012

    Article  Google Scholar 

  • Persson BNJ, Tosatti E (1994) Layering transition in confined molecular thin-films—nucleation and growth. Phys Rev B 50(8):5590–5599

    Article  Google Scholar 

  • Persson BNJ, Volokitin AI (1995) Electronic friction of physisorbed molecules. J Chem Phys 103(19):8679–8683

    Article  Google Scholar 

  • Persson BNJ, Schumacher D, Otto A (1991) Surface resistivity and vibrational damping in adsorbed layers. Chem Phys Lett 178(2–3):204–212

    Article  Google Scholar 

  • Pethica JB (1986) Interatomic forces in scanning tunneling microscopy—giant corrugations of the graphite surface—comment. Phys Rev Lett 57(25):3235

    Article  Google Scholar 

  • Pokropivny VV, Skorokhod VV, Pokropivny AV (1997) Atomistic mechanism of adhesive wear during friction of atomic sharp tungsten asperity over (114) bcc-iron surface. Mater Lett 31(1–2):49–54

    Article  Google Scholar 

  • Raeker TJ, Depristo AE (1991) Theory of chemical bonding based on the atom-homogeneous electron-gas system. Int Rev Phys Chem 10(1):1–54

    Article  Google Scholar 

  • Raffi-Tabar H, Sutton AP (1991) Long-range Finnis-Sinclair potentials for FCC metallic alloys. Phil Mag Lett 63:217–224

    Article  Google Scholar 

  • Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  Google Scholar 

  • Reimann P, Evstigneev M (2004) Nonmonotonic velocity dependence of atomic friction. Phys Rev Lett 93:230802

    Article  Google Scholar 

  • Ritter C, Heyde M, Stegemann B, Rademann K, Schwarz UD (2005) Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Phys Rev B 71:085405

    Article  Google Scholar 

  • Ruan JA, Bhushan B (1994) Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy. J Appl Phys 76(9):5022–5035

    Article  Google Scholar 

  • Ruan J, Bhushan B (1996) Nanoindentation studies of sublimed fullerene films using atomic force microscopy. J Mater Res 8(12):3019–3022

    Article  Google Scholar 

  • Samuels B, Wilks J (1988) The Friction of Diamond Sliding on Diamond. Journal of Materials Science 23(8):2846–2864

    Article  Google Scholar 

  • Sanz-Navarro CF, Kenny SD, Smith R (2004) Atomistic simulations of structural transformations. Nanotechnology 15:692–697

    Article  Google Scholar 

  • Schall JD, Brenner DW (2000) Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Mol Simul 25(1):73–80

    Article  Google Scholar 

  • Schall JD, Brenner DW (2004) Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. J Mater Res 19:3172–3180

    Article  Google Scholar 

  • Schall JD, Padgett CW, Brenner DW (2005) Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Mol Simul 31:283–288

    Article  Google Scholar 

  • Schall JD, Gao G, Harrison JA (2008) Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B 77(11)

    Google Scholar 

  • Schneider T, Stoll E (1978) Molecular-dynamics study of a 3-dimensional one-component model for distortive phase-transitions. Phys Rev B 17(3):1302–1322

    Article  Google Scholar 

  • Schoen M, Rhykerd CL, Diestler DJ, Cushman JH (1989) Shear forces in molecularly thin-films. Science 245(4923):1223–1225

    Article  Google Scholar 

  • Schwarz UD, Allers W, Gensterblum G, Wiesendanger R (1995a) Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys Rev B 52:14976–14984

    Article  Google Scholar 

  • Schwarz UD, Allers W, Gensterblum G, Wiesendanger R (1995b) Low-load friction behavior of epitaxial C-60 monolayers under Hertzian contact. Phys Rev B 52(20):14976–14984

    Article  Google Scholar 

  • Schwarz UD, Zworner O, Koster P, Wiesendanger R (1997) Quantiative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys Rev B 56(11):6987–6996

    Article  Google Scholar 

  • Sheehan PE, Lieber CM (1996) Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272:1158–1161

    Article  Google Scholar 

  • Shenderova O, Mewkill J, Brenner DW (2000) Nanoindentation as a probe of nanoscale residual stresses: atomistic simulation results. Mol Simul 25(1–2):81

    Article  Google Scholar 

  • Shluger AL, Williams RT, Rohl AL (1995) Lateral and friction forces originating during force microscope scanning of ionic surfaces. Surf Sci 343(3):273–287

    Article  Google Scholar 

  • Shon Y-S, Lee S, Colorado R, Perry SS, Lee TR (2000) Spiroalkanedithiol-based SAMs reveal unique insight into the wettabilities and frictional properties of organic thin films. J Am Chem Soc 122:7556–7563

    Article  Google Scholar 

  • Simes TR, Mellor SG, Hills DA (1984) A note on the influence of residual-stress on measured hardness. J Strain Anal Eng Des 19(2):135–137

    Article  Google Scholar 

  • Sines G, Calson R (1952) ASTM Bull 180:35

    Google Scholar 

  • Singer IL (1991) A thermochemical model for analyzing low wear-rate materials. Surf Coat Technol 49(1–3):474–481

    Article  Google Scholar 

  • Singer IL (1994) Friction and energy dissipation at the atomic scale: a review. J Vac Sci Technol A 12:2605–2616

    Article  Google Scholar 

  • Singer IL, Fayeulle S, Ehni PD (1991) Friction and wear behavior of tin in air—the chemistry of transfer films and debris formation. Wear 149(1–2):375–394

    Article  Google Scholar 

  • Sinnott SB (2000) Theory of atomic-scale friction. In: Nalwa H (ed) Handbook of nanostructured materials and nanotechnology. Academic Press, San Diego, CA, pp 571–618

    Chapter  Google Scholar 

  • Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties and applications. Crit Rev Solid State Math Sci 26(3):145–249

    Article  Google Scholar 

  • Sinnott SB, Colton RJ, White CT, Shenderova OA, Brenner DW, Harrison JA (1997) Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films. J VacSci Technol A Vac Surf Films 15(3):936–940

    Article  Google Scholar 

  • Sinnott SB, Shenderova OA, White CT, Brenner DW (1998) Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon 36(1–2):1–9

    Article  Google Scholar 

  • Smith RW, Was GS (1989) Application of molecular dynamics to the study of hydrogen embrittlement in Ni–Cr–Fe alloys. Phys Rev B 40:10322–10336

    Article  Google Scholar 

  • Smith GS, Tadmor EB, Kaxiras E (2000) Multiscale simulation of loading and electrical resistance in silicon nanoindentation. Phys Rev Lett 84(6):1260–1263

    Article  Google Scholar 

  • Sokoloff JB (1984) Theory of dynamical friction between idealized sliding surfaces. Surf Sci 144(1):267–272

    Article  Google Scholar 

  • Sokoloff JB (1990) Theory of energy-dissipation in sliding crystal-surfaces. Phys Rev B 42(1):760–765

    Article  Google Scholar 

  • Sokoloff JB (1992) Theory of atomic level sliding friction between ideal crystal interfaces. J Appl Phys 72(4):1262–1270

    Article  Google Scholar 

  • Sokoloff JB (1993) Possible nearly frictionless sliding for mesoscopic solids. Phys Rev Lett 71(21):3450–3453

    Article  Google Scholar 

  • Sokoloff JB (1995) Microscopic mechanisms for kinetic friction: nearly frictionless sliding for small solids. Phys Rev B 52:7205–7214

    Article  Google Scholar 

  • Sokoloff JB (1996) Theory of electron and phonon contributions to sliding friction. In: Persson BNJ, Tosatti E (eds) Physics of sliding friction. Kluwer Academic Publishers, Dordrecht, pp 217–229

    Google Scholar 

  • Sokoloff JB (2001) Static friction between elastic solids due to random asperities. Phys Rev Lett 86(15):3312–3315

    Article  Google Scholar 

  • Sokoloff JB (2002) Possible microscopic explanation of the virtually universal occurrence of static friction. Phys Rev B 65:115415

    Article  Google Scholar 

  • Sorensen MR, Jacobsen KW, Stoltze P (1996) Simulations of atomic-scale sliding friction. Phys Rev B 53(4):2101–2113

    Article  Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer-simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262–5271

    Article  Google Scholar 

  • Stoneham AM, Ramos MMD, Sutton AP (1993) How do they stick together—the statics and dynamics of interfaces. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 67(4):797–811

    Google Scholar 

  • Streitz FH, Mintmire JW (1994) Electrostatic potentials for metal-oxide surfaces and interfaces. Phys Rev B 50(16):11996–12003

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  • Sutton AP (1993) Electronic Structure of materials. Clarendon, Oxford

    Google Scholar 

  • Sutton AP (1996) Deformation mechanisms, electronic conductance and friction of metallic nanocontacts. Curr Opin Solid State Mater Sci 1(6):827–833

    Article  Google Scholar 

  • Sutton AP, Pithica JB (1990) Inelastic flow processes in nanometre volumes of solids. J Phys Condens Matter 2:5317–5326

    Article  Google Scholar 

  • Sutton AP, Pethica JB, Rafii-Tabar H, Nieminen JA (1992) In: Pettifor DG, Cottrell AH (eds) Electron theory in alloy design. Institute of Materials, London (Chapter 7)

    Google Scholar 

  • Tanaka J, Abrams CF, Graves DB (2000) New C–F interatomic potential for molecular dynamics simulation of fluorocarbon film formation. Nucl Inst Meth B 18(3):938–945

    Google Scholar 

  • Tang H, Joachim C, Devillers J (1993) Interpretation of Afm images—the graphite surface with a diamond tip. Surf Sci 291(3):439–450

    Article  Google Scholar 

  • Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000

    Article  Google Scholar 

  • Tersoff J (1989) Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5569

    Article  Google Scholar 

  • Thijsse BJ (2002) Relationship between the modified embedded-atom method and Stillinger-Weber potentials in calculating the structure of silicon. Phys Rev B 65:195207

    Article  Google Scholar 

  • Thompson PA, Robbins MO (1990) Origin of stick-slip motion in boundary lubrication. Science 250(4982):792–794

    Article  Google Scholar 

  • Thundat T, Warmack RJ, Ding D, Compton RN (1993) Atomic force microscope investigation of C60 adsorbed on silicon and mica. Appl Phys Lett 63(7):891–893

    Article  Google Scholar 

  • Tomagnini O, Ercolessi F, Tosatti E (1991) Microscopic interaction between a gold tip and a Pb(110) surface. Surf Sci 287(288):1041–1045

    Google Scholar 

  • Tomagnini O, Ercolessi F, Tosatti E (1993) Microscopic interaction between a gold tip and a Pb(110) surface. Surf Sci 287:1041–1045

    Article  Google Scholar 

  • Tomlinson GA (1929) A molecular theory of friction. Philos Mag Ser 7(7):905–939

    Article  Google Scholar 

  • Totten GE, Liang H (2004) Mechanical tribology: materials characterization, and applications. Marcel Dekker, New York

    Google Scholar 

  • Tsui TY, Pharr GM, Oliver WC, Bhatia CS, White CT, Anders S, Anders A, Brown IG (1995) Math Res Soc Symp Proc 383:447

    Article  Google Scholar 

  • Tully JC (1980) Dynamics of gas-surface interactions—3d generalized Langevin model applied to Fcc and Bcc surfaces. J Chem Phys 73(4):1975–1985

    Article  Google Scholar 

  • Tupper KJ, Brenner DW (1994) Compression-induced structural transition in a self-assembled monolayer. Langmuir 10(7):2335–2338

    Article  Google Scholar 

  • Tupper KJ, Colton RJ, Brenner DW (1994) Simulations of self-assembled monolayers under compression—effect of surface asperities. Langmuir 10(7):2041–2043

    Article  Google Scholar 

  • Tutein AB, Stuart SJ, Harrison JA (1999) Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond. J Phys Chem B 103(51):11357–11365

    Article  Google Scholar 

  • vanden Oetelaar RJA, Flipse CFJ (1997) Atomic-scale friction on diamond (111) studied by ultra-high vacuum atomic force microscopy. Surf Sci 384(1–3):L828–L835

    Google Scholar 

  • Volokitin AI, Persson BNJ (2003a) Resonant photon tunneling enhancement of the van der Waals friction. Phys Rev Lett 91(10):106101

    Article  Google Scholar 

  • Volokitin AI, Persson BNJ (2003b) Noncontact friction between nanostructures. Phys Rev B 68(15):155420

    Article  Google Scholar 

  • Volokitin AI, Persson BNJ (2005) Adsorbate-induced enhancement of electrostatic noncontact friction. Phys Rev Lett 94:086104

    Google Scholar 

  • Walsh P, Omeltchenko A, Kalia RK, Nakano A, Vashishta P, Saini S (2003) Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study. Appl Phys Lett 82:118–120

    Article  Google Scholar 

  • Wang J, Rose KC, Lieber CM (1999) Load-independent friction: MoO3 nanocrystal lubricants. J Phys Chem B 103(40):8405–8408

    Article  Google Scholar 

  • Wong SS, Takano H, Porter MD (1998) Mapping orientation differences of terminal functional groups by friction force microscopy. Anal Chem 70(24):5209–5212

    Article  Google Scholar 

  • Woodcock LV (1971) Isothermal molecular dynamics calculations for liquid salts. Chem Phys Lett 10(3):257–261

    Article  Google Scholar 

  • Xue Q-J, Zhang X-S, Yan F-Y (1994) Study of the structural transformations of C60/C70 crystals during friction. Chin Sci Bull 39(10):819–822

    Google Scholar 

  • Yanson AI, van Ruitenbeek JM, Yanson IK (2001a) Shell effects in alkali metal nanowires. Low Temp Phys 27(9–10):807–820

    Article  Google Scholar 

  • Yanson AI, Yanson IK, van Ruitenbeek JM (2001b) Crossover from electronic to atomic shell structure in alkali metal nanowires. Phys Rev Lett 8721(21):216805

    Article  Google Scholar 

  • Yasukawa A (1996) Using an extended tersoff interatomic potential to analyze the static-fatigue strength of SiO2 under athmospheric influence. JSME Int J A 39(3):313–320

    Google Scholar 

  • Yokohata T, Kato K (1993) Mechanism of nanoscale indentation. Wear 168(1–2):109–114

    Article  Google Scholar 

  • Yoshizawa H, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J Phys Chem 97(43):11300–11313

    Article  Google Scholar 

  • Zhang L, Jiang S (2002) Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111). J Chem Phys 117:1804–1811

    Article  Google Scholar 

  • Zhang L, Leng Y, Jiang S (2003a) Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19:9742–9747

    Article  Google Scholar 

  • Zhang LZ, Leng YS, Jiang SY (2003b) Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19(23):9742–9747

    Article  Google Scholar 

  • Zhong W, Overney G, Tomanek D (1991) In: Van Hove MA, Tong SY, Xie XD, Takayanagi K (eds) The structure of surfaces III. Springer, Berlin, p 243

    Google Scholar 

Download references

Acknowledgements

S.B.S. and S.-J.H. acknowledge support from the Air Force through grant FA9550-04-1-0367 and from the National Science Foundation supported Network for Computational Nanotechnology (EEC-0228390). D.W.B. and D.L.I acknowledge support from the Office of Naval Research through grant N00014-04-2006, the National Science Foundation through grant DMR-0304299, the Army Research Office, and the Air Force Office of Scientific Research. JAH acknowledges support from the Air Force Office of Scientific Research under contracts F1ATA08018G001 (Extreme Friction MURI) and F1ATA07351G001. JAH also acknowledges support from The Office of Naval Research under contract N0001408WR20106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan B. Sinnott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sinnott, S.B., Heo, SJ., Brenner, D.W., Harrison, J.A., Irving, D.L. (2017). Computer Simulations of Nanometer-Scale Indentation and Friction. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-51433-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51433-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51432-1

  • Online ISBN: 978-3-319-51433-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics