Skip to main content

Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy

  • Chapter
  • First Online:
Nanotribology and Nanomechanics

Abstract

Atomic force microscopy (AFM ) is an indispensable technique for nanoscale topographic imaging, as well as quantification of normal and lateral forces exerted on the AFM tip while interacting with the surface of materials. In order to measure these forces, an accurate determination of the normal and lateral forces exerted on the AFM cantilever is necessary. In this chapter, we present a critical review of various techniques for measuring cantilever stiffness in the normal and lateral/torsional directions in order to calibrate the normal and lateral forces exerted on AFM cantilevers. The key concepts of each technique are presented, along with a discussion of their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht TR, Quate CF (1987) Atomic resolution imaging of a nonconductor by atomic force microscopy. J Appl Phys 62:2599–2602

    Article  Google Scholar 

  • Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A 8:3386–3396

    Article  Google Scholar 

  • Anonymous (2016) AFM probes, tips, and cantilevers. Bruker AFM Probes, Camarillo, CA. http://www.brukerafmprobes.com

  • Asay DB, Kim SH (2006) Direct force balance method for atomic force microscopy lateral force calibration. Rev Sci Instrum 77:043903

    Article  Google Scholar 

  • Attard P (2007) Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope. J Phys Condens Matter 19:473201

    Article  Google Scholar 

  • Attard P, Carambassis A, Rutland MW (1999) Dynamic surface force measurement. 2. Friction and the atomic force microscope. Langmuir 15:553–563

    Article  Google Scholar 

  • Behrens I, Doering L, Peiner E (2003) Piezoresistive cantilever as portable micro force calibration standard. J Micromech Microeng 13:S171–S177

    Article  Google Scholar 

  • Bhushan B (1999) Handbook of micro/nanotribology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Bhushan B (2011) Nanotribology and nanomechanics I and II, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Bhushan B (2013) Introduction to tribology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Bhushan B (2017) Springer handbook of nanotechnology, 4th edn. Springer International, Switzerland

    Google Scholar 

  • Bogdanovic G, Meurk A, Rutland MW (2000) Tip friction—torsional spring constant determination. Coll Surf B 19:397–405

    Article  Google Scholar 

  • Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  • Butt H-J, Siedle P, Seifert K, Fendler K, Seeger T, Bamberg E, Weisenhorn AL, Goldie K, Engel A (1993) Scan speed limit in atomic force microscopy. J Microscopy 169:75–84

    Article  Google Scholar 

  • Cain RG, Reitsma MG, Biggs S, Page NW (2001) Quantitative comparison of three calibration techniques for the lateral force microscope. Rev Sci Instrum 72:3304–3312

    Article  Google Scholar 

  • Cannara RJ, Eglin M, Carpick RW (2006) Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev Sci Instrum 77:053701

    Article  Google Scholar 

  • Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  Google Scholar 

  • Clifford CA, Seah MP (2005) The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology 16:1666–1680

    Article  Google Scholar 

  • Cook SM, Lang KM, Chynoweth KM, Wigton M, Simmonds RW, Schaffer TE (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17:2135–2145

    Article  Google Scholar 

  • Cumpson PJ, Hedley J (2003) Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI. Nanotechnology 14:1279–1288

    Google Scholar 

  • Cumpson PJ, Hedley J, Clifford CA (2005) Microelectromechanical device for lateral force calibration in the atomic force microscope: lateral electrical nanobalance. J Vac Sci Technol B 23:1992–1997

    Google Scholar 

  • Ecke S, Raiteri R, Bonaccurso E, Reiner C, Deiseroth HJ, Butt HJ (2001) Measuring normal and friction forces acting on individual fine particles. Rev Sci Instrum 72:4164–4170

    Google Scholar 

  • Feiler A, Attard P, Larson I (2000) Calibration of the torsional spring constant and the lateral photodiode response of frictional force microscopes. Rev Sci Instrum 71:2746–2750

    Article  Google Scholar 

  • Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75:1988–1996

    Article  Google Scholar 

  • Hutter J (2005) Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 21:2630–2632

    Article  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  Google Scholar 

  • Jeon S, Braiman Y, Thundat T (2004) Torsional spring constant obtained for an atomic force microscope cantilever. Appl Phys Lett 84:1795–1797

    Article  Google Scholar 

  • Kim MS, Choi JJ, Park YK, Kim JH (2006) Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC). Metrologia 43:389–395

    Article  Google Scholar 

  • Kim MS, Choi JJ, Kim JH, Park YK (2007) Si-traceable determination of spring constants of various atomic force microscope cantilevers with a small uncertainty of 1%. Meas Sci Technol 18:3351–3358

    Article  Google Scholar 

  • Koinkar VN, Bhushan B (1997) Effect of scan size and surface roughness on microscale friction measurements. J Appl Phys 81:2472–2479

    Article  Google Scholar 

  • Leach R, Chetwynd D, Blunt L, Haycocks J, Harris P, Jackson K, Oldfield S, Reilly S (2006) Recent advances in traceable nanoscale dimension and force metrology in the UK. Meas Sci Technol 17:467–476

    Article  Google Scholar 

  • Li Q, Kim KS, Rydberg A (2006) Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev Sci Instrum 77:065105

    Article  Google Scholar 

  • Ling X, Butt H-J, Kappl M (2007) Quantitative measurement of friction between single microspheres by friction force microscopy. Langmuir 23:8392–8399

    Article  Google Scholar 

  • Liu E, Blanpain B, Celis JP (1996) Calibration procedures for frictional measurements with a lateral force microscope. Wear 192:141–150

    Article  Google Scholar 

  • Love AEH (1959) A treatise on the mathematical theory of elasticity. Pergamon, London

    Google Scholar 

  • Matei GA, Thoreson EJ, Pratt JR, Newell DB, Burnham NA (2006) Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev Sci Instrum 77:083703

    Article  Google Scholar 

  • Meyer G, Amer NM (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57:2089–2091

    Article  Google Scholar 

  • Nesterov V (2007) Facility and methods for the measurement of micro and nano forces in the range below 10−5 N with a resolution of 10−12 N (development concept). Meas Sci Technol 18:360–366

    Article  Google Scholar 

  • Neumeister JM, Ducker WA (1994) Lateral, normal and longitudinal spring constants of atomic force microscopy cantilevers. Rev Sci Instrum 65:2527–2531

    Article  Google Scholar 

  • Ogletree DF, Carpick RW, Salmeron M (1996) Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67:3298–3306

    Article  Google Scholar 

  • Ohler B (2007) Cantilever spring constant calibration using laser Doppler vibrometry. Rev Sci Instrum 78:063701

    Article  Google Scholar 

  • Ohler B (2010) Practical advice on the determination of cantilever spring constants. http://nanoscaleworld.bruker-axs.com/nanoscaleworld/media/p/143.aspx

  • Palacio MLB, Bhushan B (2010) Normal and lateral force calibration techniques for AFM cantilevers. Crit Rev Solid State Mater Sci 35:73–104, 36:261

    Google Scholar 

  • Pettersson T, Nordgren N, Rutland MW, Feiler A (2007) Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid. Rev Sci Instrum 78:093702

    Article  Google Scholar 

  • Piner R, Ruoff RS (2002) Cross talk between friction and height signals in atomic force microscopy. Rev Sci Instrum 73:3392–3394

    Article  Google Scholar 

  • Pratt JR, Kramar JA, Newell DB, Smith DT (2005) Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. Meas Sci Technol 16:2129–2137

    Article  Google Scholar 

  • Quintanilla MAS, Goddard DT (2008) A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers. Rev Sci Instrum 79:023701

    Article  Google Scholar 

  • Reitsma MG (2007) Lateral force calibration using a modified atomic force microscope cantilever. Rev Sci Instrum 78:106102

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994a) “Atomic-scale friction measurements using friction force microscopy: part i-general principles and new measurement techniques. ASME J Tribol 116:378–388

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994b) Atomic-scale and microscale friction of graphite and diamond using friction force microscopy. J Appl Phys 76:5022–5035

    Article  Google Scholar 

  • Ruan J, Bhushan B (1994c) Frictional behavior of highly oriented pyrolytic graphite. J Appl Phys 76:8117–8120

    Article  Google Scholar 

  • Sader JE (1995) Parallel beam approximation for V-shaped atomic force microscope cantilevers. Rev Sci Instrum 75:4583–4586

    Article  Google Scholar 

  • Sader JE (1998) Frequency response of cantilever beams immersed in various fluids with applications to the atomic force microscope. J Appl Phys 84:64–76

    Article  Google Scholar 

  • Sader JE (2003) Susceptibility of atomic force microscopy cantilevers to lateral forces. Rev Sci Instrum 74:2438–2443

    Article  Google Scholar 

  • Sader JE, Sader RC (2003) Suitability of atomic force microscope cantilevers to lateral forces: experimental verification. Appl Phys Lett 83:3195–3197

    Article  Google Scholar 

  • Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789–3798

    Article  Google Scholar 

  • Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscopy cantilevers. Rev Sci Instrum 70:3967–3969

    Article  Google Scholar 

  • Sader JE, Pacifico J, Green CP, Mulvaney P (2005) General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. J Appl Phys 97:124903

    Article  Google Scholar 

  • Sarid D, Elings V (1991) Review of scanning force microscopy. J Vac Sci Technol B 9:431–437

    Article  Google Scholar 

  • Senden TJ, Ducker WA (1994) Experimental determination of spring constants in atomic force microscopy. Langmuir 10:1003–1004

    Article  Google Scholar 

  • Shaw GA, Kramar J, Pratt J (2007) SI-traceable spring constant calibration of microfabricated cantilevers for small force measurement. Exp Mech 47:143–151

    Article  Google Scholar 

  • Stiernstedt J, Rutland MW, Attard P (2005) A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev Sci Instrum 76:083710

    Article  Google Scholar 

  • Stiernstedt J, Rutland MW, Attard P (2006) Erratum: a novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev Sci Instrum 77:019901

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2000) Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J Appl Phys 88:4825–4831

    Article  Google Scholar 

  • Tambe NS (2005) Nanotribological investigations of materials, coatings and lubricants for nanotechnology applications at high sliding velocities. Ph.D. dissertation, The Ohio State University; available from http://www.ohiolink.edu/etd/send-pdf.cgi?osu1109949835

  • Thomson WT, Dahleh MD (1998) Theory of vibration with applications, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Tocha E, Schonherr H, Vancso GJ (2006) Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22:2340–2350

    Article  Google Scholar 

  • Tortonese M, Kirk M (1997) Characterization of application specific probes for SPMs. Proc SPIE 3009:53–60

    Article  Google Scholar 

  • Varenberg M, Etsion I, Halperin G (2003) An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74:3362–3367

    Article  Google Scholar 

  • Wang YL, Zhao XZ, Zhou FQ (2007) Improved parallel scan method for nanofriction force measurement with atomic force microscopy. Rev Sci Instrum 78:036107

    Article  Google Scholar 

  • Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9:1353–1357

    Article  Google Scholar 

  • Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 7th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Appendix—Nomenclature

Appendix—Nomenclature

1.1 Roman Symbols

A :

Adhesive force

a :

Amplitude

b :

Cantilever width

b l :

Width of the leg in a triangular cantilever

c :

Photodetector sensitivity

d :

Distance of the tip to the edge of the cantilever

E :

Young’s modulus

F :

Friction force (lateral force)

f :

Frequency of the cantilever

G :

Shear modulus

H :

Piezo tube height in axial sliding method

h :

Cantilever thickness

I :

Area moment of inertia

J :

Mass moment of inertia

kB :

Boltzmann’s constant

k x :

Cantilever stiffness in the direction parallel to the longitudinal axis

k yB :

Cantilever stiffness in the direction perpendicular to the longitudinal axis due to bending

k yT :

Cantilever stiffness in the direction perpendicular to the longitudinal axis due to applied torque

k z :

Cantilever stiffness in the normal direction

\( k_{\phi } \) :

Cantilever torsional stiffness

L :

Cantilever length

l :

Lever length

\( \ell \) :

Tip length

M T :

Torsion moment

m :

Mass of the cantilever

m* :

Effective mass of the cantilever

m s :

Mass of added particle

P :

Normal load component in axial sliding method, or applied load in the wedge method

p :

Area of the power spectrum in the thermal noise method

Q :

Quality factor

r :

Radius of added particle

T :

Temperature (in thermal tune method), or friction/horizontal force component (in axial sliding wedge and compliance hysteresis methods)

W :

Normal load

w :

Half width of the friction loop in the wedge method

z :

Cantilever deflection.

1.2 Greek Symbols

α :

One-half the included angle between the legs of a triangular cantilever

α c, β c :

Lateral force calibration factors in the wedge method

γ :

Cantilever tilt relative to horizontal axis

Δ:

Friction loop offset in the wedge method

δI,II :

Deflection of the cantilever in the parts I and II

ε :

Calibration factor in the lever method

η :

Viscosity of fluid medium

μ :

Coefficient of friction

ν :

Poisson’s ratio

ρ :

Density

θ :

Inclination of calibration standard in the wedge method

θ II :

Rotation of the legs of a triangular cantilever in the longitudinal direction

\( \phi \) :

Cantilever rotation from applied torque

ω :

Angular frequency of the cantilever

Γ :

Hydrodynamic function in the resonance method

ς:

Damping ratio

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Palacio, M.L.B., Bhushan, B. (2017). Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-51433-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51433-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51432-1

  • Online ISBN: 978-3-319-51433-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics