Skip to main content

Heat Shock Proteins and Maternal Contribution to Oogenesis and Early Embryogenesis

  • Chapter
  • First Online:
The Role of Heat Shock Proteins in Reproductive System Development and Function

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 222))

Abstract

Early embryos develop from fertilized eggs using materials that are stored during oocyte growth and which can be defined as maternal contribution (molecules, factors, or determinants). Several heat shock proteins (HSPs) and the heat shock transcriptional factor (HSF) are part of the maternal contribution that is critical for successful embryogenesis and reproduction. A maternal role for heat shock-related genes was mainly demonstrated in genetic experimental organisms (e.g., fly, nematode, mouse). Nowadays, an increasing number of “omics” data are produced from a large panel of organisms implementing a catalog of maternal and/or embryonic HSPs and HSFs. However, for most of them, it remains to better understand their potential roles in this context. Existing and future genome-wide screens mainly set up to create loss-of-function are likely to improve this situation. This chapter will discuss available data from various experimental organisms following the developmental steps from egg production to early embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G et al (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21:1328–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, Vlahovicek K, Svoboda P, Schultz RM, Aoki F (2015) The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3' processing. EMBO J 34:1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrams EW, Mullins MC (2009) Early zebrafish development: it’s in the maternal genes. Curr Opin Genet Dev 19:396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altun ZF, Hall DH (2009) Introduction. Worm Atlas. doi:10.3908/wormatlas.1.1

    Google Scholar 

  • Ambrosio L, Schedl P (1984) Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol 105:80–92

    Article  CAS  PubMed  Google Scholar 

  • Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ, FlyBase C (2016) FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 44:D786–D792

    Article  PubMed  Google Scholar 

  • Audouard C, Le Masson F, Charry C, Li Z, Christians ES (2011) Oocyte-targeted deletion reveals that hsp90b1 is needed for the completion of first mitosis in mouse zygotes. PLoS One 6:e17109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087

    Article  CAS  PubMed  Google Scholar 

  • Bendena WG, Ayme-Southgate A, Garbe JC, Pardue ML (1991) Expression of heat-shock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster. Dev Biol 144:65–77

    Article  CAS  PubMed  Google Scholar 

  • Bierkamp C, Luxey M, Metchat A, Audouard C, Dumollard R, Christians E (2010) Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev Biol 339:338–353

    Article  CAS  PubMed  Google Scholar 

  • Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218:57–62

    Article  CAS  PubMed  Google Scholar 

  • Chik JK, Schriemer DC, Childs SJ, McGhee JD (2011) Proteome of the Caenorhabditis elegans oocyte. J Proteome Res 10:2300–2305

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J, Fuchtbauer A, Fuchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christians ES, Benjamin IJ (2005) The stress or heat shock (HS) response: insights from transgenic mouse models. Methods 35:170–175

    Article  CAS  PubMed  Google Scholar 

  • Christians E, Michel E, Adenot P, Mezger V, Rallu M, Morange M, Renard JP (1997) Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Mol Cell Biol 17:778–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christians E, Qi Z, Renard J, Benjamin I (2003) Heat shock proteins in mammalian development. Semin Dev Biol 14:283–290

    Article  CAS  Google Scholar 

  • Cobreros L, Fernandez-Minan A, Luque CM, Gonzalez-Reyes A, Martin-Bermudo MD (2008) A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mech Dev 125:1048–1058

    Article  CAS  PubMed  Google Scholar 

  • Czech B, Preall JB, McGinn J, Hannon GJ (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, Adissu H et al (2016) High-throughput discovery of novel developmental phenotypes. Nature 537:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberlein S, Mitchell HK (1987) Protein synthesis patterns following stage-specific heat shock in early Drosophila embryos. Mol Gen Genet 210:407–412

    Article  CAS  PubMed  Google Scholar 

  • Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database G (2015) The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 43:D726–D736

    Article  PubMed  Google Scholar 

  • Eroglu B, Min JN, Zhang Y, Szurek E, Moskophidis D, Eroglu A, Mivechi NF (2014) An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 386:448–460

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Bharadwaj S, Hnatov A, Ali A, Ovsenek N (1997) Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Dev Biol 181:47–63

    Article  CAS  PubMed  Google Scholar 

  • Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, Schulman M, Schloissnig S, Niessen S, Laband K et al (2011) A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 145:470–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajdu-Cronin YM, Chen WJ, Sternberg PW (2004) The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans. Genetics 168:1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, Smith JC (2013) Identification of the zebrafish maternal and paternal transcriptomes. Development 140:2703–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkila JJ (2016) The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles. Comp Biochem Physiol A Mol Integr Physiol 203:179–192

    Article  PubMed  Google Scholar 

  • Heikkila JJ, Kaldis A, Morrow G, Tanguay RM (2007) The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 25:385–395

    Article  CAS  PubMed  Google Scholar 

  • Hing HK, Bangalore L, Sun X, Artavanis-Tsakonas S (1999) Mutations in the heatshock cognate 70 protein (hsc4) modulate Notch signaling. Eur J Cell Biol 78:690–697

    Article  CAS  PubMed  Google Scholar 

  • Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH (2016) Zebrafish: a versatile animal model for fertility research. Biomed Res Int 2016:9732780

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Knight J, Mani P, Martin R, Moxon SA et al (2013) ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res 41:D854–D860

    Article  CAS  PubMed  Google Scholar 

  • Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, Done J, Down T, Gao S, Grove C et al (2016) WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44:D774–D780

    Article  PubMed  Google Scholar 

  • Inoue T, Takamura K, Yamae H, Ise N, Kawakami M, Tabuse Y, Miwa J, Yamaguchi Y (2003) Caenorhabditis elegans DAF-21 (HSP90) is characteristically and predominantly expressed in germline cells: spatial and temporal analysis. Develop Growth Differ 45:369–376

    Article  CAS  Google Scholar 

  • Inoue T, Hirata K, Kuwana Y, Fujita M, Miwa J, Roy R, Yamaguchi Y (2006) Cell cycle control by daf-21/Hsp90 at the first meiotic prophase/metaphase boundary during oogenesis in Caenorhabditis elegans. Develop Growth Differ 48:25–32

    Article  CAS  Google Scholar 

  • Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Soylemez M, Calvin G, Bornmann R, Bryant J, Hanna C, Huang YC, Deng WM (2015) A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 5:12328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TK, Cockerell FE, McKechnie SW (2011) Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol Gen Genomics 285:313–323

    Article  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD (2015) Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 43:D756–D763

    Article  PubMed  Google Scholar 

  • Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433

    Article  CAS  PubMed  Google Scholar 

  • Knoll-Gellida A, Andre M, Gattegno T, Forgue J, Admon A, Babin PJ (2006) Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genomics 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I et al (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kronja I, Whitfield ZJ, Yuan B, Dzeyk K, Kirkpatrick J, Krijgsveld J, Orr-Weaver TL (2014) Quantitative proteomics reveals the dynamics of protein changes during Drosophila oocyte maturation and the oocyte-to-embryo transition. Proc Natl Acad Sci USA 111:16023–16028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbadia J, Morimoto RI (2015) Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell 59:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Masson F, Razak Z, Kaigo M, Audouard C, Charry C, Cooke H, Westwood JT, Christians ES (2011) Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol 31:3410–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lo JF, Hayashi M, Woo-Kim S, Tian B, Huang JF, Fearns C, Takayama S, Zapata JM, Yang Y, Lee JD (2004) Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol 24:2226–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Mao C, Lee B, Lee AS (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 26:5688–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Wang M, Luo B, Wey S, Dong D, Wesselschmidt R, Rawlings S, Lee AS (2010) Targeted mutation of the mouse Grp94 gene disrupts development and perturbs endoplasmic reticulum stress signaling. PLoS One 5:e10852

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaughlin JM, Bratu DP (2015) Drosophila melanogaster oogenesis: an overview. Methods Mol Biol 1328:1–20

    Article  PubMed  Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22:8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H, Christians ES (2009) Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. J Biol Chem 284:9521–9528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezger V, Rallu M, Morimoto R, Morange M, Renard JP (1994a) Heat shock factor 2-like activity in mouse blastocysts. Dev Biol 166:819–822

    Article  CAS  PubMed  Google Scholar 

  • Mezger V, Renard J, Christians E, Morange M (1994b) Detection of heat shock element-binding activities by gel shift assay during mouse preimplantation development. Dev Biol 165:627–638

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Ortiz MA, Noble D, Sorokin EP, Kimble J (2014) A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda) 4:1765–1772

    Article  Google Scholar 

  • Owens ND, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KW, Khokha MK (2016) Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep 14:632–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardue ML, Bendena WG, Fini ME, Garbe JC, Hogan NC, Traverse KL (1990) Hsr-omega, a novel gene encoded by a drosophila heat-shock puff. Biol Bull 179:77–86

    Article  CAS  Google Scholar 

  • Perrimon N, Lanjuin A, Arnold C, Noll E (1996) Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 144:1681–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisa V, Cozzolino M, Gargiulo S, Ottone C, Piccioni F, Monti M, Gigliotti S, Talamo F, Graziani F, Pucci P et al (2009) The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis. Gene 432:67–74

    Article  CAS  PubMed  Google Scholar 

  • Rauwerda H, Wackers P, Pagano JF, de Jong M, Ensink W, Dekker R, Nehrdich U, Spaink HP, Jonker M, Breit TM (2016) Mother-specific signature in the maternal transcriptome composition of mature, unfertilized zebrafish eggs. PLoS One 11:e0147151

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupik W, Jasik K, Bembenek J, Widlak W (2011) The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comp Biochem Physiol A Mol Integr Physiol 159:349–366

    Article  PubMed  Google Scholar 

  • Sarkar S, Lakhotia SC (2008) Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev Dyn 237:1334–1347

    Article  PubMed  Google Scholar 

  • Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12:1962–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte-Merker S, Stainier DY (2014) Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141:3103–3104

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer C, Siatkowski M, Pfeiffer MJ, Baeumer N, Drexler HC, Wang B, Fuellen G, Boiani M (2014) Maternal age effect on mouse oocytes: new biological insight from proteomic analysis. Reproduction 148:55–72

    Article  CAS  PubMed  Google Scholar 

  • Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, Smibert CA (2005) Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol 15:284–294

    Article  CAS  PubMed  Google Scholar 

  • Smith GB, Umbach JA, Hirano A, Gundersen CB (2005) Interaction between constitutively expressed heat shock protein, Hsc 70, and cysteine string protein is important for cortical granule exocytosis in Xenopus oocytes. J Biol Chem 280:32669–32675

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Fee L, Lee TH, Wharton RP (2007) The molecular chaperone Hsp90 is required for mRNA localization in Drosophila melanogaster embryos. Genetics 176:2213–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  CAS  PubMed  Google Scholar 

  • Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Bertke MM, Champion MM, Zhu G, Huber PW, Dovichi NJ (2014) Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development. Sci Rep 4:4365

    PubMed  PubMed Central  Google Scholar 

  • Sun L, Dubiak KM, Peuchen EH, Zhang Z, Zhu G, Huber PW, Dovichi NJ (2016) Single cell proteomics using frog (Xenopus laevis) blastomeres isolated from early stage embryos, which form a geometric progression in protein content. Anal Chem 88:6653–6657

    Article  CAS  PubMed  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Tops BB, Gauci S, Heck AJ, Krijgsveld J (2010) Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15 N isotope labeling. J Proteome Res 9:341–351

    Article  CAS  PubMed  Google Scholar 

  • Turi Z, Hocsak E, Racz B, Szabo A, Balogh A, Sumegi B, Gallyas F Jr (2015) Role of mitochondrial network stabilisation by a human small heat shock protein in tumour malignancy. J Cancer 6:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Mehouas S, Arnaud P, Tomizawa S, Andrews S, Kelsey G (2015) Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 16:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Vowels JJ, Thomas JH (1994) Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics 138:303–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GA, Thompson FJ, Brawley A, Scanlon T, Devaney E (2003) Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans. FASEB J 17:1960–1962

    CAS  PubMed  Google Scholar 

  • Wang Z, Lindquist S (1998) Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response. Development 125:4841–4850

    CAS  PubMed  Google Scholar 

  • Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA 107:17639–17644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto TM, Wang L, Fisher LA, Eckerdt FD, Peng A (2014) Regulation of Greatwall kinase by protein stabilization and nuclear localization. Cell Cycle 13:3565–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue L, Karr TL, Nathan DF, Swift H, Srinivasan S, Lindquist S (1999) Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151:1065–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Ni X, Guo Y, Guo X, Wang Y, Zhou Z, Huo R, Sha J (2009) Proteomic-based identification of maternal proteins in mature mouse oocytes. BMC Genomics 10:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Fukushige T, McGhee JD, Rothman JH (1998) Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev 12:3809–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv T, Gattegno T, Chapovetsky V, Wolf H, Barnea E, Lubzens E, Admon A (2008) Comparative proteomics of the developing fish (zebrafish and gilthead seabream) oocytes. Comp Biochem Physiol Part D Genomics Proteomics 3:12–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth S. Christians .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christians, E.S. (2017). Heat Shock Proteins and Maternal Contribution to Oogenesis and Early Embryogenesis. In: MacPhee, D. (eds) The Role of Heat Shock Proteins in Reproductive System Development and Function. Advances in Anatomy, Embryology and Cell Biology, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-51409-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51409-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51408-6

  • Online ISBN: 978-3-319-51409-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics