Skip to main content

Continuum Level Transport and Electro-Chemo-Mechanics Coupling—Solid Oxide Fuel Cells and Lithium Ion Batteries

  • Chapter
  • First Online:
Electro-Chemo-Mechanics of Solids

Part of the book series: Electronic Materials: Science & Technology ((EMST))

Abstract

The interplay between mechanics and electrochemistry in advanced systems for energy conversion and storage has gained significant attention because such interplay closely links to both performance and reliability. For example, while certain properties, such as the diffusion coefficient and the electrochemical activity, can be enhanced by mechanical stresses and correlated strains, excessive chemically induced stresses may affect the mechanical reliability of the system. Theoretical investigations on such electro-chemo-mechanical (ECM) coupling at continuum scale are thus needed in order to improve the understanding of the underlying physics and chemistry and to realize better system designs. In spite of the long history of continuum modelling in either solid mechanics or electrochemistry, theories that couple mechanics with electrochemistry are still under development. In this article, we first critically review the governing equations and boundary conditions commonly employed in the continuum modelling of the electrochemical systems. After that, we discuss the extension of such models to include ECM coupling based on Larché and Cahn’s framework. Based on the theory introduced, we then review the application of continuum modelling, in both lithium ion batteries (LIBs) and solid oxide fuel cells (SOFCs) as applied to investigations on ECM coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, it is possible to have more than one species diffuse within the lattice. For simplicity, \({\text{A}}_{\xi } {\text{B}}\) is considered here but the related physics can be extended easily to materials with more species diffusing [59].

  2. 2.

    The result can also be applied to the case where the electrical field is included. In such a case, one should use the electrochemical potential and the PNP equations instead.

  3. 3.

    The expression of \(\sigma_{kk} /3\) and \(\frac{1}{2}\frac{{\partial C_{mnkl} }}{\partial c}\varepsilon_{mn}^{e} \varepsilon_{kl}^{e}\) utilize Einstein’s notation [63].

References

  1. Bishop, S., Marrocchelli, D., Chatzichristodoulou, C., Perry, N., Mogensen, M. B., Tuller, H., et al. (2014). Chemical expansion: Implications for electrochemical energy storage and conversion devices. Annual Review of Materials Research, 44, 205–239.

    Article  Google Scholar 

  2. Beaulieu, L., Hatchard, T., Bonakdarpour, A., Fleischauer, M., & Dahn, J. (2003). Reaction of Li with alloy thin films studied by in situ AFM. Journal of the Electrochemical Society, 150, A1457–A1464.

    Article  Google Scholar 

  3. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946.

    Article  Google Scholar 

  4. Scrosati, B., Hassoun, J., & Sun, Y.-K. (2011). Lithium-ion batteries. A look into the future, Energy & Environmental Science, 4, 3287–3295.

    Article  Google Scholar 

  5. Marrocchelli, D., Bishop, S. R., Tuller, H. L., & Yildiz, B. (2012). Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Advanced Functional Materials, 22, 1958–1965.

    Article  Google Scholar 

  6. Adler, S. B. (2001). Chemical expansivity of electrochemical ceramics. Journal of the American Ceramic Society, 84, 2117–2119.

    Article  Google Scholar 

  7. Bishop, S., Duncan, K., & Wachsman, E. (2009). Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Materialia, 57, 3596–3605.

    Article  Google Scholar 

  8. Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., et al. (2008). High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 3, 31–35.

    Article  Google Scholar 

  9. Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., et al. (2010). Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 4, 3187–3194.

    Article  Google Scholar 

  10. Cogswell, D. A., & Bazant, M. Z. (2012). Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano, 6, 2215–2225.

    Article  Google Scholar 

  11. Yildiz, B. (2014). “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion. MRS Bulletin, 39, 147–156.

    Article  Google Scholar 

  12. Kushima, A., & Yildiz, B. (2010). Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain? Journal of Materials Chemistry, 20, 4809–4819.

    Article  Google Scholar 

  13. Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., et al. (2008). Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science, 321, 676–680.

    Article  Google Scholar 

  14. Shi, Y., Bork, A. H., Schweiger, S., & Rupp, J. L. M. (2015). The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes. Nature Materials, 14, 721–727.

    Article  Google Scholar 

  15. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V., & Jesse, S. (2011). Measuring oxygen reduction/evolution reactions on the nanoscale. Nature chemistry, 3, 707–713.

    Article  Google Scholar 

  16. Morozovska, A., Eliseev, E., Balke, N., & Kalinin, S. V. (2010). Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. Journal of Applied Physics, 108, 053712.

    Article  Google Scholar 

  17. Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I. N., et al. (2010). Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Letters, 10, 3420–3425.

    Article  Google Scholar 

  18. Balke, N., Jesse, S., Morozovska, A. N., Eliseev, E., Chung, D. W., Kim, Y., et al. (2010). Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat Nano, 5, 749–754.

    Article  Google Scholar 

  19. Bazant, M. Z., Chu, K. T., & Bayly, B. (2005). Current-voltage relations for electrochemical thin films. SIAM Journal on Applied Mathematics, 65, 1463–1484.

    Article  MathSciNet  MATH  Google Scholar 

  20. Singh, G. K., Ceder, G., & Bazant, M. Z. (2008). Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4. Electrochimica Acta, 53, 7599–7613.

    Article  Google Scholar 

  21. Ciucci, F., Chueh, W. C., Goodwin, D. G., & Haile, S. M. (2011). Surface reaction and transport in mixed conductors with electrochemically-active surfaces: A 2-D numerical study of ceria. Physical Chemistry Chemical Physics, 13, 2121–2135.

    Article  Google Scholar 

  22. Ciucci, F., Hao, Y., & Goodwin, D. G. (2009). Impedance spectra of mixed conductors: A 2D study of ceria. Physical Chemistry Chemical Physics, 11, 11243–11257.

    Article  Google Scholar 

  23. Fleig, J. (2003). Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance. Annual Review of Materials Research, 33, 361–382.

    Article  Google Scholar 

  24. Lai, W., & Ciucci, F. (2011). Mathematical modeling of porous battery electrodes—Revisit of Newman’s model. Electrochimica Acta, 56, 4369–4377.

    Article  Google Scholar 

  25. Lai, W., & Ciucci, F. (2010). Thermodynamics and kinetics of phase transformation in intercalation battery electrodes—Phenomenological modeling. Electrochimica Acta, 56, 531–542.

    Article  Google Scholar 

  26. Lai, W., & Haile, S. M. (2005). Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: A case study of ceria. Journal of the American Ceramic Society, 88, 2979–2997.

    Article  Google Scholar 

  27. Yoo, H.-I., & Wuensch, B. J. (1988). Irreversible thermodynamic analyses of nonisothermal isotopic interdiffusion in ionic solids. Journal of Physics and Chemistry of Solids, 49, 253–261.

    Article  Google Scholar 

  28. DeHoff, R. (2006). Thermodynamics in materials science, 2nd ed. London: Taylor & Francis.

    Google Scholar 

  29. Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods: Fundamentals and applications. New York: Wiley.

    Google Scholar 

  30. Rickert, H. (1982). Electrochemistry of solids. Berlin: Springer.

    Google Scholar 

  31. Markowich, P. A., Ringhofer, C. A., & Schmeiser, C. (1990). Semiconductor equations. Berlin: Springer.

    Google Scholar 

  32. Jüngel, A. (2011). Quasi-hydrodynamic semiconductor equations. Basel: Birkhäuser.

    Google Scholar 

  33. Anile, A. M., & Muscato, O. (1995). Improved hydrodynamical model for carrier transport in semiconductors. Physical Review B, 51, 16728–16740.

    Article  Google Scholar 

  34. Anile, A. M., Romano, V., & Russo, G. (1998). Hyperbolic hydrodynamical model of carrier transport in semiconductors. VLSI Design, 8, 521–525.

    Article  MATH  Google Scholar 

  35. Ancona, M. G., & Iafrate, G. J. (1989). Quantum correction to the equation of state of an electron gas in a semiconductor. Physical Review B, 39, 9536–9540.

    Article  Google Scholar 

  36. Gardner, C. L. (1994). The quantum hydrodynamic model for semiconductor devices. SIAM Journal on Applied Mathematics, 54, 409–427.

    Article  MathSciNet  MATH  Google Scholar 

  37. Markowich, P. A. (1984). A singular perturbation analysis of the fundamental semiconductor device equations. SIAM Journal on Applied Mathematics, 44, 896–928.

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, C., Chen, D., Chueh, W. C., & Ciucci, F. (2014). Modeling the impedance response of mixed-conducting thin film electrodes. Physical Chemistry Chemical Physics, 16, 11573–11583.

    Article  Google Scholar 

  39. Zhu, H., & Kee, R. J. (2003). A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 117, 61–74.

    Article  Google Scholar 

  40. Marcus, R. A. (1956). On the theory of oxidation-reduction reactions involving electron transfer. I. The Journal of Chemical Physics, 24, 966–978.

    Article  Google Scholar 

  41. Bazant, M. Z. (2013). Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Accounts of Chemical Research, 46, 1144–1160.

    Article  Google Scholar 

  42. Colclasure, A. M., & Kee, R. J. (2010). Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries. Electrochimica Acta, 55, 8960–8973.

    Article  Google Scholar 

  43. Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., & Goodwin, D. G. (2005). Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society, 152, A2427–A2440.

    Article  Google Scholar 

  44. Goodwin, D. G., Zhu, H., Colclasure, A. M., & Kee, R. J. (2009). Modeling electrochemical oxidation of hydrogen on Ni–YSZ pattern anodes. Journal of the Electrochemical Society, 156, B1004–B1021.

    Article  Google Scholar 

  45. Kee, R. J., Zhu, H., & Goodwin, D. G. (2005). Solid-oxide fuel cells with hydrocarbon fuels. Proceedings of the Combustion Institute, 30, 2379–2404.

    Article  Google Scholar 

  46. Bessler, W. G. (2005). A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models. Solid State Ionics, 176, 997–1011.

    Article  Google Scholar 

  47. Armstrong, R. D., & Horrocks, B. R. (1997). The double layer structure at the metal-solid electrolyte interface. Solid State Ionics, 94, 181–187.

    Article  Google Scholar 

  48. Stern, O. (1924). The theory of the electrolytic double-layer. Zeitscrift für Elektrochemie, 30, 1014–1020.

    Google Scholar 

  49. Chapman, D. L. (1913). LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25, 475–481.

    Article  MATH  Google Scholar 

  50. Gouy, G. (1910). Constitution of the electric charge at the surface of an electrolyte. Journal of Physics, 9, 457–467.

    MATH  Google Scholar 

  51. Bazant, M. Z., Storey, B. D., & Kornyshev, A. A. (2011). Double layer in ionic liquids: Overscreening versus crowding. Physical Review Letters, 106, 046102.

    Article  Google Scholar 

  52. Dreyer, W., Guhlke, C., & Landstorfer, M. (2014). A mixture theory of electrolytes containing solvation effects. Electrochemistry Communications, 43, 75–78.

    Article  Google Scholar 

  53. Dreyer, W., Guhlke, C., & Müller, R. (2013). Overcoming the shortcomings of the Nernst-Planck model. Physical Chemistry Chemical Physics, 15, 7075–7086.

    Article  Google Scholar 

  54. Dreyer, W., Guhlke, C., & Muller, R. (2015). Modeling of electrochemical double layers in thermodynamic non-equilibrium. Physical Chemistry Chemical Physics, 17, 27176–27194.

    Article  Google Scholar 

  55. De Groot, S. R., & Mazur, P. (2013). Non-equilibrium thermodynamics. Courier Corporation.

    Google Scholar 

  56. Horrocks, B. R., & Armstrong, R. D. (1999). Discreteness of charge effects on the double layer structure at the metal/solid electrolyte interface. The Journal of Physical Chemistry B, 103, 11332–11338.

    Article  Google Scholar 

  57. Mebane, D. S., & De Souza, R. A. (2015). A generalised space-charge theory for extended defects in oxygen-ion conducting electrolytes: From dilute to concentrated solid solutions. Energy & Environmental Science, 8, 2935–2940.

    Article  Google Scholar 

  58. Larché, F., & Cahn, J. (1973). A linear theory of thermochemical equilibrium of solids under stress. Acta Metallurgica, 21, 1051–1063.

    Article  Google Scholar 

  59. Wu, C. H. (2001). The role of Eshelby stress in composition-generated and stress-assisted diffusion. Journal of the Mechanics and Physics of Solids, 49, 1771–1794.

    Article  MATH  Google Scholar 

  60. Gao, Y. F., & Zhou, M. (2011). Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. Journal of Applied Physics, 109, 014310.

    Article  Google Scholar 

  61. Gao, Y., Cho, M., & Zhou, M. (2013). Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries. Journal of Mechanical Science and Technology, 27, 1205–1224.

    Article  Google Scholar 

  62. Li, J., Oriani, R., & Darken, L. (1966). The thermodynamics of stressed solids. Zeitschrift für Physikalische Chemie, 49, 271–290.

    Article  Google Scholar 

  63. Surana, K. S. (2014). Advanced mechanics of continua. Boca Raton, FL: CRC Press.

    Google Scholar 

  64. Swaminathan, N., & Qu, J. (2007). Interactions between non-stoichiometric stresses and defect transport in a tubular electrolyte. Fuel Cells, 7, 453–462.

    Article  Google Scholar 

  65. Zhang, X., Shyy, W., & Sastry, A. M. (2007). Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of the Electrochemical Society, 154, A910–A916.

    Article  Google Scholar 

  66. Zhao, K., Pharr, M., Cai, S., Vlassak, J. J., & Suo, Z. (2011). Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. Journal of the American Ceramic Society, 94, s226–s235.

    Article  Google Scholar 

  67. Eshelby, J. D. (1951). The force on an elastic singularity. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 244, 87–112.

    Article  MathSciNet  MATH  Google Scholar 

  68. Eshelby, J. (1975). The elastic energy-momentum tensor. Journal of Elasticity, 5, 321–335.

    Article  MathSciNet  MATH  Google Scholar 

  69. Cleja-Tigoiu, S., & Maugin, G. (2000). Eshelby’s stress tensors in finite elastoplasticity. Acta Mechanica, 139, 231–249.

    Article  MATH  Google Scholar 

  70. Cui, Z., Gao, F., & Qu, J. (2012). A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of Solids, 60, 1280–1295.

    Article  MathSciNet  Google Scholar 

  71. Zhao, K., Wang, W. L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J. J., et al. (2011). Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Letters, 11, 2962–2967.

    Article  Google Scholar 

  72. Brassart, L., & Suo, Z. (2013). Reactive flow in solids. Journal of the Mechanics and Physics of Solids, 61, 61–77.

    Article  MathSciNet  Google Scholar 

  73. Brassart, L., & Suo, Z. (2012). Reactive flow in large-deformation electrodes of lithium-ion batteries. International Journal of Applied Mechanics, 4, 1250023.

    Article  Google Scholar 

  74. Cheng, Y.-T., & Verbrugge, M. W. (2009). Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. Journal of Power Sources, 190, 453–460.

    Article  Google Scholar 

  75. Cheng, Y.-T., & Verbrugge, M. W. (2008). The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. Journal of Applied Physics, 104, 083521.

    Article  Google Scholar 

  76. Prussin, S. (1961). Generation and distribution of dislocations by solute diffusion. Journal of Applied Physics, 32, 1876–1881.

    Article  Google Scholar 

  77. Zhang, X., Sastry, A. M., & Shyy, W. (2008). Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. Journal of the Electrochemical Society, 155, A542–A552.

    Article  Google Scholar 

  78. Deshpande, R., Qi, Y., & Cheng, Y.-T. (2010). Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. Journal of the Electrochemical Society, 157, A967–A971.

    Article  Google Scholar 

  79. Lee, E. H. (1969). Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 36, 1–6.

    Article  MATH  Google Scholar 

  80. Deshpande, R., Cheng, Y.-T., & Verbrugge, M. W. (2010). Modeling diffusion-induced stress in nanowire electrode structures. Journal of Power Sources, 195, 5081–5088.

    Article  Google Scholar 

  81. Sharma, P., Ganti, S., & Bhate, N. (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, 535–537.

    Article  Google Scholar 

  82. Bower, A. F., Guduru, P. R., & Sethuraman, V. A. (2011). A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. Journal of the Mechanics and Physics of Solids, 59, 804–828.

    Article  MathSciNet  MATH  Google Scholar 

  83. Gao, Y.-F., & Zhou, M. (2012). Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes. Acta Mechanica Sinica, 28, 1068–1077.

    Article  MATH  Google Scholar 

  84. Johari, P., Qi, Y., & Shenoy, V. B. (2011). The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: An ab initio molecular dynamics study. Nano Letters, 11, 5494–5500.

    Article  Google Scholar 

  85. Lee, S. H., Kim, Y. H., Deshpande, R., Parilla, P. A., Whitney, E., Gillaspie, D. T., et al. (2008). Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Advanced Materials, 20, 3627–3632.

    Article  Google Scholar 

  86. Swallow, J. G., Woodford, W. H., Chen, Y., Lu, Q., Kim, J. J., Chen, D., et al. (2014). Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage. Journal of Electroceramics, 32, 3–27.

    Article  Google Scholar 

  87. Christensen, J., & Newman, J. (2006). Stress generation and fracture in lithium insertion materials. Journal of Solid State Electrochemistry, 10, 293–319.

    Article  Google Scholar 

  88. Dahn, J. (1991). Phase diagram of LixC6. Physical Review B, 44, 9170.

    Article  Google Scholar 

  89. Liu, X. H., Zhong, L., Huang, S., Mao, S. X., Zhu, T., & Huang, J. Y. (2012). Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 6, 1522–1531.

    Article  Google Scholar 

  90. Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L., et al. (2011). Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 11, 2949–2954.

    Article  Google Scholar 

  91. Gao, Y., Cho, M., & Zhou, M. (2013). Stress relaxation through interdiffusion in amorphous lithium alloy electrodes. Journal of the Mechanics and Physics of Solids, 61, 579–596.

    Article  MATH  Google Scholar 

  92. Chen, G., Song, X., & Richardson, T. J. (2006). Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochemical and Solid-State Letters, 9, A295–A298.

    Article  Google Scholar 

  93. Ohzuku, T., Kitagawa, M., & Hirai, T. (1990). Electrochemistry of manganese dioxide in lithium nonaqueous cell: III X-ray diffractional study on the reduction of spinel-related manganese dioxide. Journal of The Electrochemical Society, 137, 769–775.

    Article  Google Scholar 

  94. Deshpande, R., Cheng, Y.-T., Verbrugge, M. W., & Timmons, A. (2011). Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. Journal of the Electrochemical Society, 158, A718–A724.

    Article  Google Scholar 

  95. Park, J., Lu, W., & Sastry, A. M. (2011). Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. Journal of the Electrochemical Society, 158, A201–A206.

    Article  Google Scholar 

  96. Christensen, J., & Newman, J. (2006). A mathematical model of stress generation and fracture in lithium manganese oxide. Journal of the Electrochemical Society, 153, A1019–A1030.

    Article  Google Scholar 

  97. Hu, Y., Zhao, X., & Suo, Z. (2010). Averting cracks caused by insertion reaction in lithium–ion batteries. Journal of Materials Research, 25, 1007–1010.

    Article  Google Scholar 

  98. Doyle, M., & Newman, J. (1997). Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 27, 846–856.

    Article  Google Scholar 

  99. Doyle, M., Fuller, T. F., & Newman, J. (1993). Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion Cell. Journal of the Electrochemical Society, 140, 1526–1533.

    Article  Google Scholar 

  100. Doyle, M., & Newman, J. (1995). The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochimica Acta, 40, 2191–2196.

    Article  Google Scholar 

  101. Xue, N., Du, W., Greszler, T. A., Shyy, W., & Martins, J. R. R. A. (2014). Design of a lithium-ion battery pack for PHEV using a hybrid optimization method. Applied Energy, 115, 591–602.

    Article  Google Scholar 

  102. Ciucci, F., & Lai, W. (2011). Derivation of micro/macro lithium battery models from homogenization. Transport in Porous Media, 88, 249–270.

    Article  MathSciNet  Google Scholar 

  103. Christensen, J. (2010). Modeling diffusion-induced stress in Li-ion cells with porous electrodes. Journal of the Electrochemical Society, 157, A366–A380.

    Article  Google Scholar 

  104. Golmon, S., Maute, K., & Dunn, M. L. (2009). Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries. Computers & Structures, 87, 1567–1579.

    Article  Google Scholar 

  105. Renganathan, S., Sikha, G., Santhanagopalan, S., & White, R. E. (2010). Theoretical analysis of stresses in a lithium ion cell. Journal of the Electrochemical Society, 157, A155–A163.

    Article  Google Scholar 

  106. Purkayastha, R., & McMeeking, R. (2012). An integrated 2-D model of a lithium ion battery: The effect of material parameters and morphology on storage particle stress. Computational Mechanics, 50, 209–227.

    Article  MathSciNet  MATH  Google Scholar 

  107. Bucci, G., Nadimpalli, S. P. V., Sethuraman, V. A., Bower, A. F., & Guduru, P. R. (2014). Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. Journal of the Mechanics and Physics of Solids, 62, 276–294.

    Article  Google Scholar 

  108. Garcı́a, R. E., Chiang, Y.-M., Craig Carter, W., Limthongkul, P., & Bishop, C. M. (2005). Microstructural modeling and design of rechargeable lithium-ion batteries. Journal of The Electrochemical Society, 152, A255–A263.

    Google Scholar 

  109. Smith, M., García, R. E., & Horn, Q. C. (2009). The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries. Journal of the Electrochemical Society, 156, A896–A904.

    Article  Google Scholar 

  110. Chung, M., Seo, J., Zhang, X., & Sastry, A. (2011). Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles. Journal of the Electrochemical Society, 158, A371–A378.

    Article  Google Scholar 

  111. Brett, D. J., Atkinson, A., Brandon, N. P., & Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37, 1568–1578.

    Article  Google Scholar 

  112. Lin, C.-K., Chen, T.-T., Chyou, Y.-P., & Chiang, L.-K. (2007). Thermal stress analysis of a planar SOFC stack. Journal of Power Sources, 164, 238–251.

    Article  Google Scholar 

  113. Riess, I. (2003). Mixed ionic–electronic conductors—Material properties and applications. Solid State Ionics, 157, 1–17.

    Article  Google Scholar 

  114. Atkinson, A., & Ramos, T. M. G. M. (2000). Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ionics, 129, 259–269.

    Article  Google Scholar 

  115. Johnson, W. C., & Schmalzried, H. (1993). Phenomenological thermodynamic treatment of elastically stressed ionic crystals. Journal of the American Ceramic Society, 76, 1713–1719.

    Article  Google Scholar 

  116. Atkinson, A. (1997). Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics, 95, 249–258.

    Article  Google Scholar 

  117. Yakabe, H., Hishinuma, M., & Yasuda, I. (2000). Static and transient model analysis on expansion behavior of LaCrO3 under an oxygen potential gradient. Journal of the Electrochemical Society, 147, 4071–4077.

    Article  Google Scholar 

  118. Krishnamurthy, R., & Sheldon, B. (2004). Stresses due to oxygen potential gradients in non-stoichiometric oxides. Acta Materialia, 52, 1807–1822.

    Article  Google Scholar 

  119. Swaminathan, N., Qu, J., & Sun, Y. (2007). An electrochemomechanical theory of defects in ionic solids. I. Theory. Philosophical Magazine, 87, 1705–1721.

    Article  Google Scholar 

  120. Swaminathan, N., Qu, J., & Sun, Y. (2007). An electrochemomechanical theory of defects in ionic solids. Part II. Examples. Philosophical Magazine, 87, 1723–1742.

    Article  Google Scholar 

  121. Terada, K., Kawada, T., Sato, K., Iguchi, F., Yashiro, K., Amezawa, K., et al. (2011). Multiscale simulation of electro-chemo-mechanical coupling behavior of PEN structure under SOFC operation. ECS Transactions, 35, 923–933.

    Article  Google Scholar 

  122. Muramatsu, M., Terada, K., Kawada, T., Yashiro, K., Takahashi, K., & Takase, S. (2015). Characterization of time-varying macroscopic electro-chemo-mechanical behavior of SOFC subjected to Ni-sintering in cermet microstructures. Computational Mechanics, 56, 653–676.

    Article  Google Scholar 

  123. Sheldon, B. W., & Shenoy, V. B. (2011). Space charge induced surface stresses: Implications in ceria and other ionic solids. Physical Review Letters, 106, 216104.

    Article  Google Scholar 

  124. Krakovský, I., Romijn, T., & Posthuma de Boer, A. (1999). A few remarks on the electrostriction of elastomers. Journal of Applied Physics, 85, 628–629.

    Article  Google Scholar 

  125. Dennler, G., Lungenschmied, C., Sariciftci, N. S., Schwödiauer, R., Bauer, S., & Reiss, H. (2005). Unusual electromechanical effects in organic semiconductor Schottky contacts: Between piezoelectricity and electrostriction. Applied Physics Letters, 87, 163501.

    Article  Google Scholar 

  126. Morozovska, A. N., Eliseev, E. A., Svechnikov, G. S., & Kalinin, S. V. (2011). Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films. Physical Review B, 84, 045402.

    Article  Google Scholar 

  127. Herring, C., & Vogt, E. (1956). Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Physical Review, 101, 944–961.

    Article  MATH  Google Scholar 

  128. Nolte, D. D., Walukiewicz, W., & Haller, E. E. (1987). Band-edge hydrostatic deformation potentials in III-V semiconductors. Physical Review Letters, 59, 501–504.

    Article  Google Scholar 

  129. Morozovska, A. N., Eliseev, E. A., Tagantsev, A. K., Bravina, S. L., Chen, L.-Q., & Kalinin, S. V. (2011). Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential. Vegard strains, and flexoelectric effect, Physical Review B, 83, 195313.

    Google Scholar 

  130. Kalinin, S., & Morozovska, A. (2014). Electrochemical strain microscopy of local electrochemical processes in solids: Mechanism of imaging and spectroscopy in the diffusion limit. Journal of Electroceramics, 32, 51–59.

    Article  Google Scholar 

  131. Morozovska, A. N., Eliseev, E. A., Bravina, S. L., Ciucci, F., Svechnikov, G. S., Chen, L.-Q., et al. (2012). Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. Journal of Applied Physics, 111, 014107.

    Article  Google Scholar 

  132. Larché, F., & Cahn, J. (1982). The effect of self-stress on diffusion in solids. Acta Metallurgica, 30, 1835–1845.

    Article  Google Scholar 

  133. Sethuraman, V. A., Srinivasan, V., Bower, A. F., & Guduru, P. R. (2010). In situ measurements of stress-potential coupling in lithiated silicon. Journal of the Electrochemical Society, 157, A1253–A1261.

    Article  Google Scholar 

  134. Gao, Y. F., & Zhou, M. (2013). Coupled mechano-diffusional driving forces for fracture in electrode materials. Journal of Power Sources, 230, 176–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ciucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wan, T.H., Ciucci, F. (2017). Continuum Level Transport and Electro-Chemo-Mechanics Coupling—Solid Oxide Fuel Cells and Lithium Ion Batteries. In: Bishop, S., Perry, N., Marrocchelli, D., Sheldon, B. (eds) Electro-Chemo-Mechanics of Solids. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51407-9_7

Download citation

Publish with us

Policies and ethics