Skip to main content

Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Cyanobacteria are a group of bacteria, which are able to perfom oxygenic photosynthesis (rely on oxygenic photosynthesis as a main energy source) to convert sun light into chemical energy. In addition to the photosystems, cyanobacteria employ phycobilisomes to enhance their light-harvesting abilities. Phycobilisomes consist of phycobiliproteins (mainly phycocyanin and phycoerythrin) with covalently attached open-chain tetrapyrroles (phycobilins) as light-harvesting pigments. These phycobilins are derived from heme. The first step of bilin synthesis is the ring opening reaction of heme into biliverdin IXα mediated by heme oxygenases. A set of different ferredoxin-dependent bilin reductases catalyse the reactions from biliverdin IXα to several phycobilins. These pigments are subsequently attached to conserved cysteine residues in the phycobiliproteins. In order to ensure the correct attachment of the phycobilins and the chromophore composition of the phycobiliproteins, the binding is mediated by phycobiliprotein-lyases. Recent studies showed that this machinery is not only present in cyanobacteria but also in phages which infect cyanobacteria. This chapter describes the biosynthesis and assembly of all components of functional phycobilisomes and their role in energy conversion as well as adaptations to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMG:

Auxiliary metabolic gene

APC:

Allophycocyanin

BR:

Bilirubin

BV:

Biliverdin

Chl:

Chlorophyll

Fd:

Ferredoxin

FDBR:

Ferredoxin-dependent bilin reductase

HL:

High light

HO:

Heme oxygenase

LL:

Low light

PBP:

Phycobiliprotein

PBS:

Phycobilisome

PC:

Phycocyanin

PCB:

Phycocyanobilin

PE:

Phycoerythrin

PEB:

Phycoerythrobilin

PEC:

Phycoerythrocyanin

PS:

Photosystem

PUB:

Phycourobilin

PVB:

Phycoviolobilin

PΦB:

Phytochromobilin

References

  • Abraham NG, Drummond GS, Lutton JD, Kappas A (1996) The biological significance and physiological role of heme oxygenase. Cell Physiol Biochem 6(3):129–168. doi:10.1159/000154819

    Article  CAS  Google Scholar 

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85(1):15–32. doi:10.1007/s11120-004-2143-y

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nature Genetics 11(2):115–116

    Article  CAS  PubMed  Google Scholar 

  • Andrade MA, Petosa C, O'Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309(1):1–18. doi:10.1006/jmbi.2001.4624

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248(1):79–96. doi:10.1006/jmbi.1995.0203

    Article  CAS  PubMed  Google Scholar 

  • Arciero D, Dallas J, Glazer A (1988) In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. J Biol Chem 263(34):18350–18357

    CAS  PubMed  Google Scholar 

  • Beale SI, Chen NC (1983) N-methyl mesoporphyrin IX inhibits phycocyanin, but not chlorophyll synthesis in Cyanidium caldarium. Plant Physiol 71(2):263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale SI, Cornejo J (1984a) Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch Biochem Biophys 235:371–384

    Article  CAS  PubMed  Google Scholar 

  • Beale SI, Cornejo J (1984b) Enzymic transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga Cyanidium caldarium. Plant Physiol 76:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale SI, Cornejo J (1991) Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 266(33):22328–22332

    CAS  PubMed  Google Scholar 

  • Beck WF, Sauer K (1992) Energy-transfer and exciton-state relaxation processes in allophycocyanin. J Phys Chem 96(11):4658–4666. doi:10.1021/j100190a094

    Article  CAS  Google Scholar 

  • Bei H, Guang-Ce W, Chen-Kui Z, Zhen-gang L (2002) The experimental research of R-phycoerythrin subunits on cancer treatment: a new photosensitizer in PDT. Cancer Biotherapy and Radiopharmaceuticals 17(1):35–42. doi:10.1089/10849780252824055

    Article  Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75(19):2353–2362. doi:10.1016/j.lfs.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  • Bermejo P, Piñero E, Villar ÁM (2008) Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chemistry 110(2):436–445. doi:10.1016/j.foodchem.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  • Bhat VB, Madyastha KM (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275(1):20–25. doi:10.1006/bbrc.2000.3270

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, Schluchter WM (2011) Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. J Biol Chem 286(41):35509–35521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blot N, Wu XJ, Thomas JC, Zhang J, Garczarek L, Bohm S, Tu JM, Zhou M, Ploscher M, Eichacker L, Partensky F, Scheer H, Zhao KH (2009) Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284(14):9290–9298. doi:10.1074/jbc.M809784200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretaudeau A, Coste F, Humily F, Garczarek L, Le Corguillé G, Six C, Ratin M, Collin O, Schluchter WM, Partensky F (2013) CyanoLyase: a database of phycobilin lyase sequences, motifs and functions. Nucl Acids Res 41(D1):D396–D401. doi:10.1093/nar/gks1091

    Article  CAS  PubMed  Google Scholar 

  • Busch AW, Reijerse EJ, Lubitz W, Frankenberg-Dinkel N, Hofmann E (2011a) Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins. Biochem J 439(2):257–264. doi:10.1042/BJ20110814

    Article  CAS  PubMed  Google Scholar 

  • Busch AW, Reijerse EJ, Lubitz W, Hofmann E, Frankenberg-Dinkel N (2011b) Radical mechanism of cyanophage phycoerythrobilin synthase (PebS). Biochem J 433(3):469–476. doi:10.1042/BJ20101642

    Article  CAS  PubMed  Google Scholar 

  • Chapman DJ, Cole WJ, Siegelman HW (1967) Chromophores of allophycocyanin and R-phycocyanin. Biochem J 105(3):903–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YR, Su YS, Tu SL (2012) Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis. Proc Natl Acad Sci USA 109(21):8310–8315. doi:10.1073/pnas.1201744109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew AGM, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Ann Rev Microbiol 61(1):113–129. doi:10.1146/annurev.micro.61.080706.093242

    Article  CAS  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, Westjohnsrud L, Zettler ER (1992) Prochlorococcus marinus Nov Gen-Nov Sp – an oxyphototrophic marine prokaryote containing divinyl chlorophyll-a and chlorophyll-b. Arch Microbiol 157(3):297–300. doi:10.1007/Bf00245165

    Article  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334(6180):340–343. doi:10.1038/334340a0

    Article  Google Scholar 

  • Cole WJ, Chapman DJ, Siegelman HW (1967) The structure of phycocyanobilin. J Am Chem Soc 89:3643–3645

    Article  CAS  Google Scholar 

  • Collier JL, Herbert SK, Fork DC, Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth Res 42(3):173–183. doi:10.1007/BF00018260

    Article  CAS  PubMed  Google Scholar 

  • Cornejo J, Willows RD, Beale SI (1998) Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J 15(1):99–107

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8(2):190–209. doi:10.1111/1751-7915.12167

    Article  CAS  PubMed  Google Scholar 

  • Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N (2008a) Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol 18(6):442–448. doi:10.1016/j.cub.2008.02.067

    Article  CAS  PubMed  Google Scholar 

  • Dammeyer T, Frankenberg-Dinkel N (2006) Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem 281(37):27081–27089. doi:10.1074/jbc.M605154200

    Article  CAS  PubMed  Google Scholar 

  • Dammeyer T, Hofmann E, Frankenberg-Dinkel N (2008b) Phycoerythrobilin synthase (PebS) of a marine virus. Crystal structures of the biliverdin complex and the substrate-free form. J Biol Chem 283(41):27547–27554. doi:10.1074/jbc.M803765200

    Article  CAS  PubMed  Google Scholar 

  • Dammeyer T, Michaelsen K, Frankenberg-Dinkel N (2007) Biosynthesis of open-chain tetrapyrroles in Prochlorococcus marinus. FEMS Microbiol Lett 271(2):251–257. doi:10.1111/j.1574-6968.2007.00715.x

    Article  CAS  PubMed  Google Scholar 

  • de Lorimier R, Bryant DA, Stevens SE Jr (1990) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta 1019(1):29–41

    Article  PubMed  Google Scholar 

  • Debreczeny MP, Sauer K, Zhou J, Bryant DA (1993) Monomeric C-phycocyanin at room temperature and 77 K: resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants. The Journal of Physical Chemistry 97(38):9852–9862. doi:10.1021/j100140a050

    Article  CAS  Google Scholar 

  • Delgado Roche L, Lagumersindez-Denis N, Llopiz-Arzuaga A, Pentón-Arias E, Pentón-Rol G (2011) Protective effects of C-Phycocyanin against lipid peroxidation of serum lipoproteins and hepatic microsomes. Pharmacologyonline 3:668–676

    Google Scholar 

  • Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC (2013) Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci USA 110(9):3621–3626. doi:10.1073/pnas.1222375110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducret A, Sidler W, Wehrli E, Frank G, Zuber H (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236(3):1010–1024

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI, Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100(17):10020–10025. doi:10.1073/pnas.1733211100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairchild CD, Glazer AN (1994) Nonenzymatic bilin addition to the alpha subunit of an apophycoerythrin. J Biol Chem 269(46):28988–28996

    CAS  PubMed  Google Scholar 

  • Falk H, Höllbacher G (1978) Beiträge zur Chemie der Pyrrolpigmente, 24. Mitt. Über die Beziehung zwischen Lichtabsorption und Struktur von Bilatrienen-abc. Monatshefte für Chemie/Chemical Monthly 109(6):1429–1449

    Article  CAS  Google Scholar 

  • Fischer R, Gottstein J, Scheer H, Geiselhart P, Schneider S (1990) Picosecond time-resolved fluorescence of phycobiliproteins: Subunits of phycocyanin from Mastigocladus laminosus. Journal of Photochemistry and Photobiology B Biology 5(2):151–165

    Article  CAS  Google Scholar 

  • Frankenberg-Dinkel N (2004) Bacterial heme oxygenases. Antioxid Redox Signal 6(5):825–834. doi:10.1089/ars.2004.6.825

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Lagarias JC (2003) Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic. J Biol Chem 278(11):9219–9226. doi:10.1074/jbc.M211643200

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13(4):965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambetta GA, Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci USA 98(19):10566–10571. doi:10.1073/pnas.191375198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N (2012) Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Arch Microbiol 194(7):597–606. doi:10.1007/s00203-012-0796-z

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1977) Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae. Mol Cell Biochem 18(2–3):125–140

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77. doi:10.1146/annurev.bb.14.060185.000403

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1989) Light guides. J Biol Chem 264:1–4

    CAS  PubMed  Google Scholar 

  • Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus – the presence of divinyl chlorophyll-a and chlorophyll-b in a marine prokaryote. Limnol Ocean 37(2):425–433

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57(3):725–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grubmayr K, Wagner U (1988) Zur chemie der thioladdition an 2,3-dihydro-3-ethylidendipyrrin-1(10H)-one—eine modellstudie zur kovalenten chromophor-protein-bindung in biliproteiden. Monatshefte für Chemie/Chemical Monthly 119(8–9):965–983. doi:10.1007/BF00810106

    Article  CAS  Google Scholar 

  • Gutu A, Kehoe DM (2012) Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Molecular Plant 5(1):1–13. doi:10.1093/mp/ssr054

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara Y, Sugishima M, Takahashi Y, Fukuyama K (2006a) Crystal structure of phycocyanobilin: ferredoxin oxidoreductase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phycocyanobilin. Proc Natl Acad Sci USA 103(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara Y, Sugishima M, Takahashi Y, Fukuyama K (2006b) Induced-fitting and electrostatic potential change of PcyA upon substrate binding demonstrated by the crystal structure of the substrate-free form. FEBS Lett 580(16):3823–3828. doi:10.1016/j.febslet.2006.05.075

    Article  CAS  PubMed  Google Scholar 

  • Hess WR, Partensky F, van der Staay GW, Garcia-Fernandez JM, Borner T, Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93(20):11126–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess WR, Schendel R, Rudiger W, Fieder B, Borner T (1992) Components of chlorophyll biosynthesis in a barley albina mutant unable to synthesize delta-aminolevulinic acid by utilizing the transfer RNA for glutamic acid. Planta 188(1):19–27. doi:10.1007/BF00198935

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Ishizuka T (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7(10):1159–1167. doi:10.1039/b802660m

    Article  CAS  PubMed  Google Scholar 

  • Kahn K, Schaefer MR (1997) rpbA controls transcription of the constitutive phycocyanin gene set in Fremyella diplosiphon. J Bacteriol 179(24):7695–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe DM, Grossman AR (1994) Complementary chromatic adaptation: photoperception to gene regulation. Semin Cell Biol 5(5):303–313

    Article  CAS  PubMed  Google Scholar 

  • Klotz AV, Glazer AN (1987) gamma-N-methylasparagine in phycobiliproteins. occurrence, location, and biosynthesis. J Biol Chem 262(36):17350–17355

    CAS  PubMed  Google Scholar 

  • Klotz AV, Leary JA, Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. J Biol Chem 261(34):15891–15894

    CAS  PubMed  Google Scholar 

  • Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13(2):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kufer W, Scheer H (1979) Studies on plant bile pigments, VII. Preparation and characterization of phycobiliproteins with chromophores chemically modified by reduction. Hoppe Seylers Z Physiol Chem 360(7):935–956

    Article  CAS  PubMed  Google Scholar 

  • Lagarias JC, Rapoport H (1980) Chromopeptides from phytochrome – the structure and linkage of the Pr form of the phytochrome chromophore. J Am Chem Soc 102(14):4821–4828. doi:10.1021/ja00534a042

    Article  CAS  Google Scholar 

  • Lakowicz JR (1994) , Topics in fluorescence spectroscopy: volume 4: probe design and chemical sensing, vol 4. Springer Science & Business Media

    Google Scholar 

  • Ledermann B, Beja O, Frankenberg-Dinkel N (2016) New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ Microbiol 18:4337–4347. doi:10.1111/1462-2920.13290

  • Lehner H, Krauss C, Scheer H (1981) Solvent induced circular dichroism in conformational analysis: bile pigments. Zeitschrift für Naturforschung B 36(6):735–738

    Article  Google Scholar 

  • Lemberg R (1928) The chromo-proteid of dulse. I. Justus Liebigs Annalen der Chemie 461:46–89

    Article  CAS  Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261(5562):697–698

    Article  CAS  PubMed  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101(30):11013–11018. doi:10.1073/pnas.0401526101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124(2):311–334

    Article  CAS  PubMed  Google Scholar 

  • Magne F (1989) Classification and phylogeny of Rhodophyta. Cryptogamie Algol 10(2):101–115

    Google Scholar 

  • Maines MD (2005) New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology (Bethesda) 20:382–389. doi:10.1152/physiol.00029.2005

    Article  CAS  Google Scholar 

  • Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJ, Martiny JB (2013) Marine cyanophages exhibit local and regional biogeography. Environ Microbiol 15(5):1452–1463. doi:10.1111/1462-2920.12062

    Article  CAS  PubMed  Google Scholar 

  • Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270(4):687–698

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Leonard HS, Pinsky IG, Turner BM, Williams SR, Harrison L Jr, Fletcher AF, Shen G, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins. III. CpcM is the asparagine methyltransferase for phycobiliprotein beta-subunits in cyanobacteria. J Biol Chem 283(28):19293–19300. doi:10.1074/jbc.M802734200

    Article  CAS  PubMed  Google Scholar 

  • Montellano PR (2000) The mechanism of heme oxygenase. Curr Opin Chem Biol 4(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Moreira IO, Passos TS, Chiapinni C, Silveira GK, Souza JCM, Coca-Vellarde LG, Deliza R, de Lima Araújo KG (2012) Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt. J Sci Food Agr 92(3):598–605. doi:10.1002/jsfa.4614

    Article  CAS  Google Scholar 

  • Nagy JO, Bishop JE, Klotz AV, Glazer AN, Rapoport H (1985) Bilin attachment sites in the alpha, beta, and gamma subunits of R-phycoerythrin. Structural studies on singly and doubly linked phycourobilins. J Biol Chem 260(8):4864–4868

    CAS  PubMed  Google Scholar 

  • North AC (1990) Structural homology in ligand-specific transport proteins. Biochem Soc Symp 57:35–48

    CAS  PubMed  Google Scholar 

  • Ong LJ, Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J Biol Chem 266(15):9515–9527

    CAS  PubMed  Google Scholar 

  • Overkamp KE, Gasper R, Kock K, Herrmann C, Hofmann E, Frankenberg-Dinkel N (2014) Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins. J Biol Chem 289(39):26691–26707. doi:10.1074/jbc.M114.591131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva-Silva GO, Cruz-Oliveira C, Nakayasu ES, Maya-Monteiro CM, Dunkov BC, Masuda H, Almeida IC, Oliveira PL (2006) A heme-degradation pathway in a blood-sucking insect. Proc Natl Acad Sci USA 103(21):8030–8035. doi:10.1073/pnas.0602224103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinevich AV, Skulberg OM, Matthijs HCP, Schubert H, Willen E, Gavrilova OV, Velichko N (1999) Characterization of a novel chlorophyll b-containing Prochlorothrix species (Prochlorophyta) and its photosynthetic apparatus. Microbios 100(397):159–174

    CAS  Google Scholar 

  • Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183(21):6394–6403. doi:10.1128/JB.183.21.6394-6403.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richaud C, Zabulon G (1997) The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc Natl Acad Sci USA 94(21):11736–11741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimbau V, Camins A, Pubill D, Sureda FX, Romay C, González R, Jiménez A, Escubedo E, Camarasa J, Pallàs M (2001) C-Phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn-Schmiedeberg’s Archives of Pharmacology 364(2):96–104. doi:10.1007/s002100100437

    Article  CAS  PubMed  Google Scholar 

  • Romay C, Delgado R, Remirez D, González R, Rojas A (2001) Effects of phycocyanin extract on tumor necrosis factor-alpha and nitrite levels in serum of mice treated with endotoxin. Arzneimittel-Forschung 51(9):733–736

    CAS  PubMed  Google Scholar 

  • Rümbeli R, Suter F, Wirth M, Sidler W, Zuber H (1987) γ-N-Methylasparagine in phycobiliproteins from the cyanobacteria Mastigocladus laminosus and Calothrix. FEBS Lett 221(1):1–2. doi:10.1016/0014-5793(87)80341-1

    Article  Google Scholar 

  • Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34(8):795–801

    Article  CAS  Google Scholar 

  • Saunée NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of β-phycocyanin and Cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283(12):7513–7522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68(2):263–276. doi:10.1111/j.1365-2958.2008.06160.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2· 5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: the molecular model and its implications for light-harvesting. J Mol Biol 188(4):651–676

    Article  CAS  PubMed  Google Scholar 

  • Schluchter WM, Glazer AN (1997) Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J Biol Chem 272(21):13562–13569

    Article  CAS  PubMed  Google Scholar 

  • Schluchter WM, Glazer AN (1999) Biosynthesis of phycobiliproteins in cyanobacteria. In: The phototrophic prokaryotes. Springer US, pp 83–95

    Google Scholar 

  • Schluchter WM, Shen G, Alvey RM, Biswas A, Saunee NA, Williams SR, Mille CA, Bryant DA (2010) Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification. Adv Exp Med Biol 675:211–228. doi:10.1007/978-1-4419-1528-3_12

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MP (1997) Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179(3):838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen G, Leonard HS, Schluchter WM, Bryant DA (2008a) CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803. J Bacteriol 190(14):4808–4817. doi:10.1128/JB.00436-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen G, Saunee NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 281(26):17768–17778. doi:10.1074/jbc.M602563200

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Schluchter WM, Bryant DA (2008b) Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 283(12):7503–7512. doi:10.1074/jbc.M708164200

    Article  CAS  PubMed  Google Scholar 

  • Shih S-R, Tsai K-N, Li Y-S, Chueh C-C, Chan E-C (2003) Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga spirulina platensis. Journal of Medical Virology 70(1):119–125. doi:10.1002/jmv.10363

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Biswas A, Blot N, Partensky F, Karty JA, Hammad LA, Garczarek L, Gutu A, Schluchter WM, Kehoe DM (2012) Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proc Natl Acad Sci USA 109(49):20136–20141. doi:10.1073/pnas.1211777109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidler WA, Bryant DA (1994) The molecular biology of Cyanobacteria. In: Advances in photosynthesis, vol 1. Springer, pp 139–216

    Google Scholar 

  • Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8(12):R259. doi:10.1186/gb-2007-8-12-r259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR (2005) A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Environ Microbiol 7(10):1611–1618. doi:10.1111/j.1462-2920.2005.00855.x

    Article  CAS  PubMed  Google Scholar 

  • Steglich C, Mullineaux CW, Teuchner K, Hess WR, Lokstein H (2003) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett 553(1–2):79–84

    Article  CAS  PubMed  Google Scholar 

  • Subhashini J, Mahipal SVK, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68(3):453–462. doi:10.1016/j.bcp.2004.02.025

    Article  CAS  PubMed  Google Scholar 

  • Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochem 44(11):4257–4266. doi:10.1021/bi0480483

    Article  CAS  Google Scholar 

  • Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K (2004) Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur J Biochem 271 (22):4517–4525. doi:10.1111/j.1432-1033.2004.04411.x

    Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3 (5):e144. doi:10.1371/journal.pbio.0030144

    Google Scholar 

  • Suttle CA, Chan AM (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 60(9):3167–3174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RV, Glazer AN (1990) Phycobiliprotein methylation. Effect of the gamma-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214 (3):787–796. doi:0022-2836(90)90293-U

    Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76(1):193–205. doi:10.1023/a:1024954911473

    Article  PubMed  Google Scholar 

  • Thomas BA, Bricker TM, Klotz AV (1993) Post-translational methylation of phycobilisomes and oxygen evolution efficiency in cyanobacteria. Biochim Biophys Act Bioenergetics 1143(1):104–108. doi:10.1016/0005-2728(93)90222-2

    Article  CAS  Google Scholar 

  • Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology 10(3):134–142. doi:10.1016/S0966-842X(02)02319-3

    Article  CAS  PubMed  Google Scholar 

  • Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci USA 98(19):10560–10565. doi:10.1073/pnas.181340998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu SL, Chen HC, Ku LW (2008) Mechanistic studies of the phytochromobilin synthase HY2 from Arabidopsis. J Biol Chem 283(41):27555–27564. doi:10.1074/jbc.M803761200

    Article  CAS  PubMed  Google Scholar 

  • Tu SL, Gunn A, Toney MD, Britt RD, Lagarias JC (2004) Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. J Am Chem Soc 126(28):8682–8693. doi:10.1021/ja049280z

    Article  CAS  PubMed  Google Scholar 

  • Tu SL, Rockwell NC, Lagarias JC, Fisher AJ (2007) Insight into the radical mechanism of phycocyanobilin-ferredoxin oxidoreductase (PcyA) revealed by X-ray crystallography and biochemical measurements. Biochem 46(6):1484–1494. doi:10.1021/bi062038f

    Article  CAS  Google Scholar 

  • Unno M, Ishikawa-Suto K, Kusaka K, Tamada T, Hagiwara Y, Sugishima M, Wada K, Yamada T, Tomoyori K, Hosoya T, Tanaka I, Niimura N, Kuroki R, Inaka K, Ishihara M, Fukuyama K (2015) Insights into the proton transfer mechanism of a bilin reductase PcyA following neutron crystallography. J Am Chem Soc 137(16):5452–5460. doi:10.1021/jacs.5b00645

    Article  CAS  PubMed  Google Scholar 

  • Wiethaus J, Busch AW, Dammeyer T, Frankenberg-Dinkel N (2010a) Phycobiliproteins in Prochlorococcus marinus: biosynthesis of pigments and their assembly into proteins. Eur J Cell Biol 89(12):1005–1010. doi:10.1016/j.ejcb.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  • Wiethaus J, Busch AW, Kock K, Leichert LI, Herrmann C, Frankenberg-Dinkel N (2010b) CpeS is a lyase specific for attachment of 3Z-PEB to Cys82 of β-phycoerythrin from Prochlorococcus marinus MED4. J Biol Chem 285(48):37561–37569. doi:10.1074/jbc.M110.172619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilbanks SM, Glazer AN (1993) Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J Biol Chem 268(2):1236–1241

    CAS  PubMed  Google Scholar 

  • Wilbanks SM, Wedemayer GJ, Glazer AN (1989) Posttranslational modifications of the beta subunit of a cryptomonad phycoerythrin. Sites of bilin attachment and asparagine methylation. J Biol Chem 264(30):17860–17867

    CAS  PubMed  Google Scholar 

  • Wilks A (2002) Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4(4):603–614. doi:10.1089/15230860260220102

    Article  CAS  PubMed  Google Scholar 

  • Wood AM (1985) Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature 316(6025):253–255. doi:10.1038/316253a0

    Article  CAS  Google Scholar 

  • Yilmaz M, Kang I, Beale SI (2010) Heme oxygenase 2 of the cyanobacterium Synechocystis sp. PCC 6803 is induced under a microaerobic atmosphere and is required for microaerobic growth at high light intensity. Photosynth Res 103(1):47–59. doi:10.1007/s11120-009-9506-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Migita CT, Sato M, Sasahara M, Yoshida T (2005) Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. FEBS J 272(4):1012–1022. doi:10.1111/j.1742-4658.2004.04535.x

    Article  CAS  PubMed  Google Scholar 

  • Zhao K-H, Su P, Böhm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core–membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Act Bioenergetics 1706(1–2):81–87. doi:10.1016/j.bbabio.2004.09.008

    Article  CAS  Google Scholar 

  • Zhao K-H, Su P, Li J, Tu J-M, Zhou M, Bubenzer C, Scheer H (2006) Chromophore Attachment to Phycobiliprotein β-Subunits Phycocyanobilin: Cysteine-β84 Phycobiliprotein Lyase Activity of CpeS-like Protein from Anabaena sp. PCC7120. J Biol Chem 281(13):8573–8581

    Article  CAS  PubMed  Google Scholar 

  • Zhao K-H, Zhang J, Tu J-M, Böhm S, Plöscher M, Eichacker L, Bubenzer C, Scheer H, Wang X, Zhou M (2007) Lyase activities of CpcS-and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin β-subunits. J Biol Chem 282(47):34093–34103

    Article  CAS  PubMed  Google Scholar 

  • Zhao K-H, Zhu J-P, Song B, Zhou M, Storf M, Böhm S, Bubenzer C, Scheer H (2004) Nonenzymatic chromophore attachment in biliproteins: conformational control by the detergent Triton X-100. Biochim Biophys Act Bioenergetics 1657(2–3):131–145. doi:10.1016/j.bbabio.2004.04.010

    Article  CAS  Google Scholar 

  • Zhao KH, Wu D, Wang L, Zhou M, Storf M, Bubenzer C, Strohmann B, Scheer H (2002) Characterization of phycoviolobilin phycoerythrocyanin-α84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur J Biochem 269(18):4542–4550

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, De Lorimier R, Bryant D (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J Biol Chem 267(23):16138–16145

    CAS  PubMed  Google Scholar 

  • Zhou W, Ding W-L, Zeng X-L, Dong L-L, Zhao B, Zhou M, Scheer H, Zhao K-H, Yang X (2014) Structure and mechanism of the phycobiliprotein lyase CpcT. J Biol Chem 289(39):26677–26689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Frankenberg-Dinkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ledermann, B., Aras, M., Frankenberg-Dinkel, N. (2017). Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-51365-2_9

Download citation

Publish with us

Policies and ethics