Skip to main content

Proteome Analysis of Phototrophic Adaptation

  • Chapter
  • First Online:

Abstract

For decades, cyanobacteria have been of great interest in research because their metabolic versatility and their capacity to adapt to a variety of environmental conditions have enabled cyanobacteria to colonize various habitats. Furthermore, the metabolic abilities of cyanobacteria also make them useful for human applications, and therefore, they have been extensively characterized. To understand more deeply the molecular basis for the underlying metabolic versatility, cyanobacteria have been subjected to various culture conditions (e.g., nutrient limitations, salt and high-light exposure), followed by characterization by molecular “omic” approaches. Here, we reviewed the proteomic approach and focused on its application in the characterization of the molecular ability through the phylum Cyanobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Trypsine : proteolytic enzyme that cleaves proteins at the C-terminal side of lysine or arginine (unless the adjacent amino acid is a proline) (Baldwin 2003; Hustoft et al. 2012; Tsiatsiani and Heck 2015).

  2. 2.

    Sodium dodecyl sulphate (SDS) : anionic detergent that denatures, and coats proteins with a negative charge (Chevalier 2010).

  3. 3.

    Isoelectric point (pI): specific pH at which proteins exhibit a net charge of zero (Chevalier 2010).

  4. 4.

    Phycobiliproteins : water-soluble proteinaceous pigments containing covalently bound open-chain tetrapyrroles (Kumar and Murthy 2007; Singh et al. 2015; Tamary et al. 2012).

  5. 5.

    Linker polypeptides : key peptides in face-to-face aggregation of PBPs and stability of the PBS suprastructure (Guan et al. 2007; Kumar and Murthy 2007; Singh et al. 2015; Watanabe et al. 2012).

  6. 6.

    Carboxysomes : organelles accumulating large quantities of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase in association with the carbon-concentrating mechanism proteins (Bazylinski et al. 2014; Castenholz et al. 2001; Garcia-Pichel 2009).

References

  • Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genom 2012:1–17

    Article  CAS  Google Scholar 

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genom Proteom 5:112–120

    Article  CAS  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Aryal UK, Callister SJ, Mishra S, Zhang X, Shutthanandan JI, Angel TE, Shukla AK, Monroe ME, Moore RJ et al (2013) Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl Environ Microbiol 79:1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Baldwin MA (2003) Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Ahrné E, Baron AP, Glatter T, Fava LL, Santamaria A, Nigg EA, Schmidt A (2014) Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. J Proteome Res 13:5973–5988

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA et al (2014) Magnetotactic bacteria, magnetosomes, and nanotechnology. In: Nanomicrobiology, pp 39–74

    Google Scholar 

  • Borges N, Marugg JD, Empadinhas N, Da Costa MS, Santos H (2004) Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J Biol Chem 279:9892–9898

    Article  CAS  PubMed  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, Hoffmann L (2001) Phylum BX. Cyanobacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s Manual® Syst Bacteriol. Springer, New York, pp 473–599

    Chapter  Google Scholar 

  • Chapman JD, Goodlett DR, Masselon CD (2013) Multiplexed and data-indepent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev 33:452–470

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Jiang P, Liu S, Zhao H, Cui Y, Qin S (2011) Purification of 6xHis-tagged phycobiliprotein using zinc-decorated silica-coated magnetic nanoparticles. J Chromatogr B Anal Technol Biomed Life Sci 879:993–997

    Article  CAS  Google Scholar 

  • Chevalier F (2010) Highlights on the capacities of ‘Gel-based’ proteomics. Proteome Sci 8:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choe L, D’Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, Guertin S, Pribil P, Lee KH (2007) 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7:3651–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Fermin D, Nesvizhskii AI (2008) Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics 7:2373–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke AK (1999) ATP-dependent Clp proteases in photosynthetic organisms—a cut above the rest! Ann Bot 83:593–599

    Article  Google Scholar 

  • Cohen SE, Golden SS (2015) Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev 79:373–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Saito MA (2013) Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Front Microbiol 4:1–17

    Google Scholar 

  • D’Agostino PM, Song X, Neilan BA, Moffitt MC (2015) Proteogenomics of a saxitoxin-producing and non-toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 18:461–476

    Article  CAS  Google Scholar 

  • Depraetere O, Deschoenmaeker F, Badri H, Monsieurs P, Foubert I, Leys N, Wattiez R, Muylaert K (2015) Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS One 10:1–19

    Article  CAS  Google Scholar 

  • Deschoenmaeker F, Facchini R, Badri H, Leroy B, Zhang C-C, Wattiez R (2014) Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion. Microbiology 160:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Distler U, Kuharev J, Navarro P, Tenzer S (2016) Label-free quantification in ion mobility–enhanced data-independent acquisition proteomics. Nat Protoc 11:795–812

    Article  CAS  PubMed  Google Scholar 

  • Doerr A (2014) DIA mass spectrometry. Nat Methods 12:35

    Article  CAS  Google Scholar 

  • Doyle SM, Kravats AN, Hoskins JR, Shih Y-H, Stan G, Wickner S (2015) 50 Interaction and collaboration between DnaK and ClpB during protein disaggregation. J Biomol Struct Dyn 33:34–35

    Article  PubMed  Google Scholar 

  • Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Fenn J, Mann M, Meng C, Wong S, Whitehouse C (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Florencio FJ, Pérez-Pérez ME, López-Maury L, Mata-Cabana A, Lindahl M (2006) The diversity and complexity of the cyanobacterial thioredoxin systems. Photosynth Res 89:157–171

    Article  CAS  PubMed  Google Scholar 

  • Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP (2007) Multidimensional separations-based shotgun proteomics. Chem Rev 107:3654–3686

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama Y (2015) MALDI matrix research for biopolymers. Mass Spectrom 4:1–14

    Article  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Fuszard MA, Ow S, Gan C, Noirel J, Ternan NG, McMullan G, Biggs CA, Reardon KF, Wright PC (2013) The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation. Aquat Biosyst 9:1–12

    Article  CAS  Google Scholar 

  • Garcia-Pichel F (2009) Cyanobacteria. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Amsterdam, pp 107–124

    Google Scholar 

  • Gevaert K, Impens F, Ghesquière B, Van Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–4885

    Article  CAS  PubMed  Google Scholar 

  • Gillet, L. C., Navarro, P., Tate, S., Ro, H., Selevsek, N., Reiter, L., Bonner, R., Aebersold, R., Rost, H. & other authors. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11, 1–45.

    Google Scholar 

  • Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Garcia MR, Losada M, Serrano A (2003) Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302:601–609

    Article  CAS  PubMed  Google Scholar 

  • Gründel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol (United Kingdom) 158:3032–3043

    Google Scholar 

  • Guan X, Qin S, Zhao F, Zhang X, Tang X (2007) Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int J Biol Sci 3:434–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerreiro ACL, Benevento M, Lehmann R, van Breukelen B, Post H, Giansanti P, Altelaar AFM, Axmann IM, Heck AJR (2014) Daily rhythms in the cyanobacterium Synechococcus elongatus probed by high-resolution mass spectrometry based proteomics reveals a small-defined set of cyclic proteins. Mol Cell Proteomics 13:1–37

    Article  CAS  Google Scholar 

  • Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Tal O, Jallet D, Wilson A, Kirilovsky D, Adir N (2016) Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci 113:1–8

    Article  CAS  Google Scholar 

  • Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M, Guedeney G, He Q, Grossman AR (2003) Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta 1557:21–33

    Article  CAS  PubMed  Google Scholar 

  • He Q, Dolganov N, Björkman O, Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276:306–314

    Article  CAS  PubMed  Google Scholar 

  • Herrero A, Muro-pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongsthong A, Sirijuntarut M, Yutthanasirikul R, Senachak J, Kurdrid P, Cheevadhanarak S, Tanticharoen M (2009) Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis. Proteome Sci 7:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J et al (2015) SWATH enables precise label-free quantification on proteome scale. Proteomics 15:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W (2013) Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. Mol BioSyst 9:2565–2574

    Article  CAS  PubMed  Google Scholar 

  • Hustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T (2012) Integrative proteomics. In: Leung H-C (ed) Integr proteomics. InTech, Croatia

    Google Scholar 

  • Ishihama Y (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3:350–363

    Article  CAS  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166

    Article  CAS  PubMed  Google Scholar 

  • Komárek J, Kling H, Komárková J (2003) Freshwater algae of North America. In: Wehr JD, Sheath RG, Kociolek JP (eds) Aquat Ecol. Elsevier S, New York, pp 117–196

    Google Scholar 

  • Kumar DP, Murthy SDS (2007) Photoinhibition induced alterations in energy transfer process in phycobilisomes of PS II in the cyanobacterium, Spirulina platensis. J Biochem Mol Biol 40:644–648

    CAS  PubMed  Google Scholar 

  • Kurdrid P, Senachak J, Sirijuntarut M, Yutthanasirikul R, Phuengcharoen P, Jeamton W, Roytrakul S, Cheevadhanarak S, Hongsthong A (2011) Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components. Proteome Sci 9:1–16

    Article  CAS  Google Scholar 

  • Ladig R, Sommer MS, Hahn A, Leisegang MS, Papasotiriou DG, Ibrahim M, Elkehal R, Karas M, Zickermann V et al (2011) A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant J 67:181–194

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Sowa ME, Choi J-M, Tsai FTF (2004) The ClpB/Hsp104 molecular chaperone—a protein disaggregating machine. J Struct Biol 146:99–105

    Article  CAS  PubMed  Google Scholar 

  • Lesur A, Domon B (2015) Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics 15:880–890

    Article  CAS  PubMed  Google Scholar 

  • Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics 11:3273–3287

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Wang L, Zhang Y, Lei X, Yang J, You X, Cheng CL, Zhou Y, Chen W (2013) Comparative proteomic and physiological analysis of diurnal changes in Nostoc flagelliforme. J Appl Phycol 25:1709–1721

    Article  CAS  Google Scholar 

  • Lin, S., Litaker, R. W. & Sunda, W. G. (2016). Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol 52, 10–36 M. Wood Cambridge: Cambridge University Press.

    Google Scholar 

  • Linder P, Jankowsky E (2011) From unwinding to clamping — the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    Article  CAS  PubMed  Google Scholar 

  • Lohnes K, Quebbemann NR, Liu K, Kobzeff F, Loo JA, Ogorzalek Loo RR (2016) Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics. Methods 104:1–7

    Article  CAS  Google Scholar 

  • Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Derock J, Leroy B, Badri H, Deschoenmaeker F, Wattiez R (2014) Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005. PLoS One 9:e99076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moruz L, Käll L (2016) Peptide retention time prediction. Mass Spectrom Rev 47:1–9

    Google Scholar 

  • Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD (2016) Identifying regulatory changes to facilitate nitrogen fixation in the nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 5:250–258

    Article  CAS  PubMed  Google Scholar 

  • Münchbach M, Quadroni M, Miotto G, James P (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic n-terminal labeling of peptides with a fragmentation-directing moiety. Anal Chem 72:4047–4057

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor MI, Reyes JC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–38328

    CAS  PubMed  Google Scholar 

  • Muro-Pastor MI, Reyes JC, Florencio FJ (2005) Ammonium assimilation in cyanobacteria. Photosynth Res 83:135–150

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novikova GV, Moshkov IE, Los DA (2007) Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Mol Biol 41:427–437

    Article  CAS  Google Scholar 

  • Ong S-E (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  • Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST (2010) Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr 55:2161–2169

    Article  CAS  Google Scholar 

  • Ow SY, Cardona T, Taton A, Magnuson A, Lindblad P, Stensjö K, Wright PC (2008) Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J Proteome Res 7:1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Pandhal J, Wright PC, Biggs CA (2007) A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4. J Proteome Res 6:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Pandhal J, Snijders APL, Wright PC, Biggs CA (2008) A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using15N metabolic labelling. Proteomics 8:2266–2284

    Article  CAS  PubMed  Google Scholar 

  • Pandhal J, Ow SY, Wright PC, Biggs CA (2009) Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J Proteome Res 8:818–828

    Article  CAS  PubMed  Google Scholar 

  • Pereira SB, Ow SY, Barrios-Llerena ME, Wright PC, Moradas-Ferreira P, Tamagnini P (2011) iTRAQ-based quantitative proteomic analysis of Gloeothece sp. PCC 6909: comparison with its sheathless mutant and adaptations to nitrate deficiency and sulfur limitation. J Proteome 75:270–283

    Article  CAS  Google Scholar 

  • Pérez-Pérez ME, Mata-Cabana A, Sánchez-Riego AM, Lindahl M, Florencio FJ (2009) A comprehensive analysis of the peroxiredoxin reduction system in the cyanobacterium Synechocystis sp. strain PCC 6803 reveals that all five peroxiredoxins are thioredoxin dependent. J Bacteriol 191:7477–7489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poetsch A, Wolters D (2008) Bacterial membrane proteomics. Proteomics 8:4100–4122

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Huang S, Te R, Wang J, Chen L, Zhang W (2013) Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 97:8253–8264

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Singh S, Shrivastava AK, Rai LC (2013) Salt and UV-B induced changes in Anabaena PCC 7120: physiological, proteomic and bioinformatic perspectives. Photosynth Res 118:105–114

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160:647–658

    Article  CAS  PubMed  Google Scholar 

  • Rhee S-G (2016) Overview on peroxiredoxin. Mol Cell 39:1–5

    Article  CAS  Google Scholar 

  • Ross PL (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Röst HL, Aebersold R, Schubert OT (2016) Automated SWATH data analysis using targeted extraction of ion chromatograms. bioRxiv. doi:10.1101/044552

    Google Scholar 

  • Rowland JG, Simon WJ, Nishiyama Y, Slabas AR (2010) Differential proteomic analysis using iTRAQ reveals changes in thylakoids associated with Photosystem II-acquired thermotolerance in Synechocystis sp. PCC 6803. Proteomics 10:1917–1929

    Article  CAS  PubMed  Google Scholar 

  • Sandh G, Ran L, Xu L, Sundqvist G, Bulone V, Bergman B (2011) Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes. Proteomics 11:406–419

    Article  CAS  PubMed  Google Scholar 

  • Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58:769–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  CAS  PubMed  Google Scholar 

  • Scigelova M, Hornshaw M, Giannakopulos A, Makarov A (2011) Fourier transform mass spectrometry. Mol Cell Proteomics 10:1–19

    Article  CAS  Google Scholar 

  • Sendersky E, Kozer N, Levi M, Moizik M, Garini Y, Shav-Tal Y, Schwarz R (2015) The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex. Plant J 83:845–852

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  • Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li G-Z, McKenna T, Nold MJ, Richardson K et al (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Sonani RR, Prasad Rastogi R, Madamwar D (2015) The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. EXCLI J 14:268–289

    PubMed  PubMed Central  Google Scholar 

  • Siu SO, Lam MPY, Lau E, Kong RPW, Lee SMY, Chu IK (2011) Fully automatable two-dimensional reversed-phase capillary liquid chromatography with online tandem mass spectrometry for shotgun proteomics. Proteomics 11:2308–2319

    Article  CAS  PubMed  Google Scholar 

  • Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ (2006) Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864

    Article  CAS  PubMed  Google Scholar 

  • Spat P, Macek B, Forchhammer K (2015) Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation. Front Microbiol 6:1–15

    Article  Google Scholar 

  • Spicer V, Ezzati P, Neustaeter H, Beavis RC, Wilkins JA, Krokhin OV (2016) 3D HPLC-MS with reversed-phase separation functionality in all three dimensions for large-scale bottom-up proteomics and peptide retention data collection. Anal Chem 88:2847–2855

    Article  CAS  PubMed  Google Scholar 

  • Stöckel J, Jacobs JM, Elvitigala TR, Liberton M, Welsh EA, Polpitiya AD, Gritsenko MA, Nicora CD, Koppenaal DW et al (2011) Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142. PLoS One 6:e16680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Susnea I, Bernevic B, Wicke M, Ma L, Liu S, Schellander K, Przybylski M (2012) Application of MALDI-TOF-mass spectrometry to proteome analysis using stain-free gel electrophoresis. In: Zongwei C, Shuying L (eds) Applications of MALDI-TOF Spectroscopy. Springer, Berlin Heidelberg, pp 37–54

    Chapter  Google Scholar 

  • Suzuki I, Simon WJ, Slabas AR (2006) The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57:1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9:1323–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci U S A 103:12109–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817:319–327

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  • Tanaka N, Nakamoto H (1999) HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett 458:117–123

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Katayama M, Ito R, Takai N, Kondo T, Oyama T (2007) labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev 21:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi Y, Nishikawa T, Kondo T, Oyama T (2012) Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942. FEBS Lett 586:753–759

    Article  CAS  PubMed  Google Scholar 

  • Teikari J, Österholm J, Kopf M, Battchikova N, Wahlsten M, Aro E, Hess WR (2015) Transcriptomic and proteomic profiling of Anabaena sp. strain 90 under inorganic phosphorus stress. Appl Environ Microbiol 81:5212–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Theiss C, Schmitt F-J, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert H-J (2011) Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J Plant Physiol 168:1473–1487

    Article  CAS  PubMed  Google Scholar 

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Heck AJR (2015) Proteomics beyond trypsin. FEBS J 282:2612–2626

    Article  CAS  PubMed  Google Scholar 

  • Ünal CM, Steinert M (2014) Microbial peptidyl-prolyl cis/trans isomerase (ppiases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 78:544–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D, Liang X, Chen X, Guo J (2013) Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 14:9018–9036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteom 2013:1–12

    Article  CAS  Google Scholar 

  • Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M (2012) Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. Biochim Biophys Acta 1817:1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Webb-Robertson BJM, Wiberg HK, Matzke MM, Brown JN, Wang J, McDermott JE, Smith RD, Rodland KD, Metz TO et al (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res 14:1993–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Campii DG et al (2010) Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics 9:2678–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welkie D, Zhang X, Markillie M, Taylor R, Orr G, Jacobs J, Bhide K, Thimmapuram J, Gritsenko M et al (2014) Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle. BMC Genomics 15:–1185

    Google Scholar 

  • Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Luke B, Andresson T, Blonder J (2009) 18O stable isotope labeling in MS-based proteomics. Brief Funct Genom Proteom 8:136–144

    Article  CAS  Google Scholar 

  • Yue D, Peng Y, Yin Q, Xiao L (2015) Proteomic analysis of Microcystis aeruginosa in response to nitrogen and phosphorus starvation. J Appl Phycol 27:1195–1204

    Article  CAS  Google Scholar 

  • Zhang P, Allahverdiyeva Y, Eisenhut M, Aro E-M (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS One 4:1–12

    Article  CAS  Google Scholar 

  • Zhang Y, Wen Z, Washburn MP, Florens L (2015) Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance. Anal Chem 87:4749–4756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Frédéric Deschoenmaeker is an F.R.I.A. PhD student. This manuscript was edited for proper English language by qualified native English speaking editors at American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruddy Wattiez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deschoenmaeker, F., Leroy, B., Wattiez, R. (2017). Proteome Analysis of Phototrophic Adaptation. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-51365-2_7

Download citation

Publish with us

Policies and ethics