Primary Decompositions

with Sections on Macaulay2 and Networks
  • Irena SwansonEmail author
  • Eduardo Sáenz-de-Cabezón
Part of the Lecture Notes in Mathematics book series (LNM, volume 2176)


This chapter contains three major sections, each one roughly corresponding to a lecture. The first section is on computing primary decompositions, the second one is more specifically on binomial ideals, and the last one is on some primary decomposition questions in algebraic statistics and networks.


  1. 8.
    Ay, N., Rauh, J.: Robustness and conditional independence ideals. Preprint (2011). arXiv:1110.1338Google Scholar
  2. 30.
    Bruns, W., Vetter, U.: Determinantal Rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)Google Scholar
  3. 42.
    Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: algorithms and comparisons. In: Algorithmic Algebra and Number Theory (Heidelberg, 1997), pp. 187–220. Springer, Berlin (1999)Google Scholar
  4. 46.
    Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 363–397 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 47.
    Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwolfach Seminars, vol. 39. Birkhäuser, Basel (2009)Google Scholar
  6. 51.
    Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84, 1–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 52.
    Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math. 110, 207–235 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 54.
    Fink, A.: The binomial ideal of the intersection axiom for conditional probabilities. J. Algebraic Combin. 33, 455–463 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 60.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decompositions of polynomial ideals. J. Symbolic Comput. 6, 149–167 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 62.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at
  11. 64.
    Herzog, J., Hibi, T., Hreinsdottir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45, 317–333 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 68.
    Kahle, T.: Decompositions of binomial ideals in Macaulay2. J. Softw. Algebra Geom. 4, 1–5 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 69.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Berlin (2008). Corrected reprint of the 2000 originalGoogle Scholar
  14. 70.
    Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (New Orleans, LA, 1991). Lecture Notes in Computer Science, vol. 539, pp. 195–205. Springer, Berlin (1991)Google Scholar
  15. 73.
    Laubenbacher, R.C., Swanson, I.: Permanental ideals. J. Symb. Comput. 30, 195–205 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 74.
    Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series, vol. 17. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1996)Google Scholar
  17. 80.
    Morey, S., Villarreal, R.: Edge ideals: algebraic and combinatorial properties. Prog. Commut. Algebra 1, 85–126 (2012)MathSciNetzbMATHGoogle Scholar
  18. 84.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 86.
    Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39, 905–917 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 87.
    Ojeda, I.: Binomial canonical decompositions of binomial ideals. Commun. Algebra 39, 3722–3735 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 88.
    Ojeda, I., Piedra-Sánchez, R.: Canonical decomposition of polynomial ideals. Unpublished preprint. (1999)
  22. 89.
    Ojeda, I., Piedra-Sánchez, R.: Index of nilpotency of binomial ideals. J. Algebra 255, 135–147 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 90.
    Ortiz, V.: Sur une certaine decomposition canonique d’un idéal en intersection d’idéaux primaires dans un anneau noetherien commutatif. C. R. Acad. Sci. Paris 248, 3385–3387 (1959)MathSciNetzbMATHGoogle Scholar
  24. 92.
    Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. Computational Commutative Algebra in Statistics. Monographs on Statistics and Applied Probability, vol. 89. Chapman & Hall/CRC, Boca Raton (2001)Google Scholar
  25. 100.
    Sáenz-de-Cabezón, E., Wynn, H.P.: Measuring the robustness of a network using minimal vertex covers. Math. Comput. Simul. 104, 82–94 (2014)MathSciNetCrossRefGoogle Scholar
  26. 102.
    Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. Symbolic Comput. 22, 247–277 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 109.
    Studený, M.: Attempts at axiomatic description of conditional independence. Kybernetika (Prague) Suppl. 25 (1–3), 72–79 (1989); Workshop on Uncertainty Processing in Expert Systems (Alšovice, 1988)Google Scholar
  28. 111.
    Swanson, I., Taylor, A.: Minimal primes of ideals arising from conditional independence statements. J. Algebra 392, 299–314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 115.
    Villarreal, R.: Monomial Algebras. Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Marcel Dekker, New York (2001)Google Scholar
  30. 116.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  31. 118.
    Yao, Y.: Primary decomposition: compatibility, independence and linear growth. Proc. Am. Math. Soc. 130, 1629–1637 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Reed CollegePortlandUSA
  2. 2.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroñoSpain

Personalised recommendations