Koszul Algebras and Computations

  • Anna M. BigattiEmail author
  • Emanuela De Negri
Part of the Lecture Notes in Mathematics book series (LNM, volume 2176)


A Koszul algebra R is a \(\mathbb{N}\)-graded K-algebra whose residue field K has a linear free resolution as an R-module. Many papers and lectures have been given on this topic, so here we collect various properties and facts which are related to being a Koszul algebra, and illustrate their mutual implications or counter-examples.

In addition we explain how one can investigate computationally these many aspects, some of which would seem to be intrinsically intractable, and we show many examples by using CoCoA-5.


Complete Intersection Polynomial Ring Betti Number Hilbert Series Homogeneous Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbott, J.: Quadratic interval refinement for real roots. ACM Commun. Comput. Algebra 48, 3–12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for doing Computations in Commutative Algebra. Available at
  3. 5.
    Anick, D.: A counterexample to a conjecture of Serre. Ann. Math. 115, 1–33 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 9.
    Backelin, J.: On the rates of growth of the homologies of Veronese subrings. In: Algebra, Algebraic Topology, and Their Interactions (Stockholm, 1983). Lecture Notes in Mathematics. vol. 1183, pp. 79–100, Springer, Berlin (1986)Google Scholar
  5. 10.
    Backelin, J., Fröberg, R.: Koszul algebras, Veronese subrings, and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30, 85–97 (1985)MathSciNetzbMATHGoogle Scholar
  6. 12.
    Bayer, D., Stillman, M.: A criterion for detecting m-regularity. Invent. Math. 87, 1–11 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 17.
    Bigatti, A.M., De Negri, E.: Stanley decompositions using CoCoA. In: Monomial Ideals, Computations and Applications. Lecture Notes in Mathematics, vol. 2083, pp. 47–59. Springer, Heidelberg (2013)Google Scholar
  8. 18.
    Bigatti, A.M., La Scala, R., Robbiano, L.: Computing toric ideals. J. Symbolic Comput. 27, 351–365 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 28.
    Bruns, W., Conca, A.: Gröbner bases and determinantal ideals. In: Commutative Algebra, Singularities and Computer Algebra (Sinaia, 2002). Nato Science Series II: - Mathematics, Physics and Chemistry, vol. 115, pp. 9–66. Kluwer Acadamic Publication, Dordrecht (2003)Google Scholar
  10. 34.
    Conca, A.: Koszul Algebras and their sygyzies. In: Combinatorial Algebraic Geometry. Lecture Notes in Mathematics, vol. 2108, pp. 47–59. Springer, Cham (2014)Google Scholar
  11. 35.
    Conca, A., Rossi, M.E., Valla, G.: Gröbner flags and Gorenstein algebras. Compos. Math. 129, 95–121 (2001)CrossRefzbMATHGoogle Scholar
  12. 36.
    Conca, A., Trung, N.V., Valla, G.: Koszul property for points in projective spaces. Math. Scand. 89, 201–216 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 37.
    Conca, A., De Negri, E., Rossi, M.E.: Koszul Algebras and regularity. In: Commutative Algebra, pp. 285–315. Springer, New York (2013)Google Scholar
  14. 39.
    Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. In: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, 4th edn. Springer, Cham (2015)Google Scholar
  15. 41.
    De Negri, E.: Toric rings generated by special stable sets of monomials. Math. Nachr. 203, 31–45 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 57.
     Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory (Fez 1997). Lecture Notes in Pure and Applied Mathematics, vol. 205, pp. 337–350. Dekker, New York (1999)Google Scholar
  17. 66.
    Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties. Available at
  18. 67.
    Jensen, A N.: CaTS, a software system for toric state polytopes. Available at
  19. 69.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Berlin (2008). Corrected reprint of the 2000 originalGoogle Scholar
  20. 79.
    Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6, 183–208 (1988)CrossRefzbMATHGoogle Scholar
  21. 93.
    Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence (2005)Google Scholar
  22. 95.
    Priddy, S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 96.
    Reiner, V., Welker, V.: On the Charney–Davis and Neggers–Stanley conjectures. J. Comb. Theory Ser. A 109, 247–280 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 98.
    Roos, J.-E.: Commutative non Koszul algebras having a linear resolution of arbitrarily high order. Applications to torsion in loop space homology. C. R. Acad. Sci. 316, 1123–1128 (1993)zbMATHGoogle Scholar
  25. 99.
    Roos, J.-E.: Good and bad Koszul algebras and their Hochschild. J. Pure Appl. Algebra 201, 295–327 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 110.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations