Skip to main content

Modeling Hybrid Vehicles as Switched Systems

  • Chapter
  • First Online:
Hybrid Systems, Optimal Control and Hybrid Vehicles

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter describes the main layouts of hybrid powertrains including all relevant mechatronic subsystems. The focus of this chapter is to describe the hybrid powertrains as switched systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andre M (2004) Real-world driving cycles for measuring cars pollutant emissions—part A: the artemis european driving cycles. Rep Inrets-LTE 411:97

    Google Scholar 

  2. van Basshuysen R (2013) Ottomotor mit Direkteinspritzung: Verfahren, Systeme, Entwicklung, Potenzial. Atz/Mtz-Fachbuch, Springer Fachmedien Wiesbaden

    Google Scholar 

  3. Baumann BM, Washington G, Glenn BC, Rizzoni G (2000) Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Trans Mechatron 5(1):58–72

    Article  Google Scholar 

  4. Beck R, Richert F, Bollig A, Abel D, Saenger S, Neil K, Scholt T, Noreikat KE (2005) Model predictive control of a parallel hybrid vehicle drivetrain. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference. CDC-ECC’05. IEEE, pp 2670–2675

    Google Scholar 

  5. Boehme T, Metwally O, Becker B, Meinhardt N, Rucht M, Rabba H (2012) A simulation-based comparison of different power split configurations with respect to the system efficiency. In: SAE world congress, Technical paper 2012-01-0438. doi:10.4271/2012-01-0438

  6. Boehme TJ, Becker B, Ruben-Weck M, Rothschuh M, Boldt A, Rollinger C, Butz R, Rabba H (2013) Optimal design strategies for different hybrid powertrain configurations assessed with European drive cycles. In: SAE world congress, Technical paper 2013-01-1751. doi:10.4271/2013-01-1751

  7. Boehme TJ, Frank B, Schultalbers M, Schori M, Lampe B (2013) Solutions of hybrid energy-optimal control for model-based calibrations of HEV powertrains. In: SAE world congress, Technical paper 2013-01-1747. doi:10.4271/2013-01-1747

  8. Boehme TJ, Schori M, Frank B, Schultalbers M, Lampe B (2013) Solution of a hybrid optimal control problem for parallel hybrid vehicles subjected to thermal constraints. In: 52nd IEEE conference on decision and control

    Google Scholar 

  9. Boehme TJ, Rothschuh M, Frank B, Schultalbers M, Schori M, Jeinsch T (2014) Multi-objective optimal design of parallel plug-in hybrid powertrain configurations with respect to fuel consumption and driving performance. SAE Int J Alt Power 3(2):176–192. doi:10.4271/2014-01-1158

    Article  Google Scholar 

  10. Branicky MS (1995) Studies in hybrid systems: modeling, analysis, and control. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  11. Chi S (2007) Position-sensorless control of permanent magnet synchronous machines over wide speed range. PhD thesis, Ohio state University

    Google Scholar 

  12. Colin G, Bloch G, Chamaillard Y, Ivanco A (2010) A real time neural energy management strategy for a hybrid pneumatic engine. IFAC symposium advances in automotive control. AAC, Munich, pp 75–80

    Google Scholar 

  13. Conlon B (2005) Comparative analysis of single and combined hybrid electrically variable transmission operating mode. In: SAE world congress, Technical paper 2005-01-1162. doi:10.4271/2005-01-1162

  14. Du Z, Cheong KL, Li PY, Chase TR (2013) Fuel economy comparisons of series, parallel and HMT hydraulic hybrid architectures. In: Proceedings of the American control conference, Washington, DC, pp 5974–5979

    Google Scholar 

  15. Ebbesen S, Elbert P, Guzzella L (2012) Battery state-of-health perceptive energy management for hybrid electric vehicles. IEEE Trans Veh Technol 61(7):2893–2900

    Article  Google Scholar 

  16. Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric, and fuel cell vehicles. Fundamentals, theory, and design, 2nd edn. CRC Press

    Google Scholar 

  17. Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745

    Article  Google Scholar 

  18. Gelb G, Richardson N, Wang T, Berman B (1971) An electromechanical transmission for hybrid vehicle power trains—design and dynamometer testing. In: SAE world congress, Technical Paper 710235. doi:10.4271/710235

  19. Gopal RV, Rousseau AP (2011) System analysis using multiple expert tools. In: SAE world congress, Technical Paper 2011-01-0754

    Google Scholar 

  20. Guzzella L, Sciarretta A (2005) Vehicle propulsion systems. Introduction to modeling and optimization. Springer, Berlin

    Google Scholar 

  21. Halbach S, Sharer P, Pagerit S, Rousseau AP, Folkerts C (2010) Model architecture, methods, and interfaces for efficient math-based design and simulation of automotive control systems. In: SAE world congress, Technical Paper 2010-01-0241

    Google Scholar 

  22. Hofmann P (2010) Hybridfahrzeuge. Springer, Wien, New York

    Google Scholar 

  23. Holmes A, Schmidt M (2002) Hybrid electric powertrain including a two-mode electrically variable transmission. US Patent 6,478,705

    Google Scholar 

  24. Hu X, Johannesson L, Murgovski N, Egardt B (2015) Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Appl Energy 137:913–924

    Article  Google Scholar 

  25. Hu Y, Yurkovich S, Guezennec Y, Bornatico R (2008) Model-based calibration for battery characterization in HEV applications. Proceedings of the 2008 American control conference, Seattle. IEEE, pp 318–325

    Google Scholar 

  26. Isermann R (2007) Mechatronic systems: fundamentals. Springer Science & Business Media

    Google Scholar 

  27. de Jager B, van Keulen T, Kessels J (2013) Optimal control of hybrid vehicles. Springer

    Google Scholar 

  28. Kaya CY, Noakes JL (2003) Computational method for time-optimal switching control. J Optim Theory Appl 117(1):69–92

    Article  MathSciNet  MATH  Google Scholar 

  29. Khajepour A, Fallah MS, Goodarzi A (2014) Electric and hybrid vehicles: technologies, modeling and control—a mechatronic approach. Wiley

    Google Scholar 

  30. Kiencke U, Nielsen L (2000) Automotive control systems. for engine, driveline, and vehicle. Springer, Berlin

    Google Scholar 

  31. Koprubasi K (2008) Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements. PhD thesis, The Ohio State University

    Google Scholar 

  32. Kum D, Peng H, Bucknor N (2011) Supervisory control of parallel hybrid electric vehicles for fuel and emission reduction. ASME J Dyn Syst Meas Control 133(6):4498–4503

    Article  Google Scholar 

  33. Lee CY, Zhao H, Ma T (2008) A low cost air hybrid concept. In: Les Rencontres Scientifiques de l’IFP—Advances in hybrid powertrains

    Google Scholar 

  34. Lee EA (2006) Cyber-physical systems—are computing foundations adequate? In: Workshop NSF on research motivation, techniques and roadmap, cyber-physical systems

    Google Scholar 

  35. Lee EA, Seshia SA (2011) Introduction to embedded systems—a cyber-physical systems approach. LeeSeshia.org

    Google Scholar 

  36. Lemaréchal C (1989) Nondifferentiable optimization. In: Handbooks in operations research and management science. Elsevier Science Publishers B.V., North-Holland

    Google Scholar 

  37. Liu J (2007) Modeling, configuration and control optimization of power-split hybrid vehicles. PhD thesis, The University of Michigan

    Google Scholar 

  38. Liu J, Peng H (2006) Control optimization for a power-split hybrid vehicle. In: Proceedings of the 2006 American control conference, Minneapolis, pp 466–471

    Google Scholar 

  39. Loxton R, Lin Q, Teo KL (2013) Minimizing control variation in nonlinear optimal control. Automatica 49(9):2652–2664

    Article  MathSciNet  Google Scholar 

  40. Markel T, Brooker A, Hendricks T, Johnson V, Kelly K, Kramer B, O?Keefe M, Sprik S, Wipke K, (2002) ADVISOR: a systems analysis tool for advanced vehicle modeling. J Power Sources 110(2):255–266

    Google Scholar 

  41. Matthé R, Eberle U (2014) The voltec system-energy storage and electric propulsion. Elsevier, Amsterdam, The Netherlands

    Book  Google Scholar 

  42. Miller JM (2004) Propulsion systems for hybrid vehicles, vol 45. The Institution of Electrical Engineers

    Google Scholar 

  43. Miller JM, Everett M (2005) An assessment of ultracapacitors as the power cache in toyota THS-II, GM-Allision AHS-2 and ford FHS hybrid propulsion system. In: Applied power electronics conference and exposition, APEC 2005. Twentieth annual IEEE, pp 481–490

    Google Scholar 

  44. Morari M, Baotic M, Borrelli F (2003) Hybrid systems modeling and control. Eur J Control 9(2):177–189

    Article  MATH  Google Scholar 

  45. Padovani TM, Debert M, Colin G, Chamaillard Y (2013) Optimal energy management strategy including battery health through thermal management for hybrid vehicles. In: Advances in automotive control (AAC 2013), pp 384–389

    Google Scholar 

  46. Passenberg B, Leibold M, Stursberg O, Buss PC (2011) The minimum principle for time-varying hybrid systems with state switching and jumps. In: Proceedings of the IEEE conference on decision and control, pp 6723–6729

    Google Scholar 

  47. Pichler F, Cifrain M (2014) Application-related battery modelling: from empirical to mechanistic approaches. In: Automotive battery technology, Springer, pp 53–69

    Google Scholar 

  48. Porsche-Spyder (2013) Hybrid-Supersportler mit 887 PS. http://www.auto-motor-und-sport.de

  49. Rao V, Singhal G, Kumar A, Navet N (2005) Battery model for embedded systems. In: 18th international conference on VLSI design, 2005. IEEE, pp 105–110

    Google Scholar 

  50. Reza NJ (2009) Vehicle dynamics. Theory and application. Springer

    Google Scholar 

  51. Rizzoni G, Guzzella L, Baumann BM (1999) Unified modeling of hybrid electric vehicle drivetrains. IEEE Trans Mechatron 4(3):246–257

    Article  Google Scholar 

  52. Roelle MJ, Shaver GM, Gerdes JC (2004) Tackling the transition: a multi-mode combustion model of SI and HCCI for mode transition control. In: ASME 2004 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 329–336

    Google Scholar 

  53. Sagastizábal C (1997) Nonsmooth optimization. In: Numerical optimization—theoretical and practical aspects, 2nd edn. Springer, Berlin

    Google Scholar 

  54. Schmidt MR (1996) Two-mode, input-split, parallel, hybrid transmission

    Google Scholar 

  55. Schmidt MR (1999) Two-mode, compound-split, electro-mechanical vehicular transmission

    Google Scholar 

  56. Schori M, Boehme T, Jeinsch T, Schultalbers M (2014) Optimal catalytic converter heating in hybrid vehicles. In: SAE World congress, Technical paper 2014-01-1351. doi:10.4271/2014-01-1351

  57. Sciarretta A, di Domenico D, Pognant-Gros P, Zito G (2014) Optimal energy management of automotive battery systems including thermal dynamics and aging. In: Optimization and optimal control in automotive systems, Springer, pp 219–236

    Google Scholar 

  58. Silva C, Farias T, Frey H, Rouphail N (2006) Evaluation of numerical models for simulation of real-world hot-stabilized fuel consumption and emissions of gasoline light-duty vehicles. Transp Res Part D 1(5):377–385

    Article  Google Scholar 

  59. Stewart DE (1992) A numerical algorithm for optimal control problems with switching costs. J Aust Math Soc Ser B Appl Math 34(02):212–228

    Article  MathSciNet  MATH  Google Scholar 

  60. Stockar S, Marano V, Canova M, Rizzoni G, Guzzella L (2011) Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles. IEEE Trans Veh Control 60(7):2949–2962

    Article  Google Scholar 

  61. Van Der Schaft AJ, Schumacher JM, van der Schaft AJ, van der Schaft AJ (2000) An introduction to hybrid dynamical systems, vol 251. Lecture notes in control and information science. Springer, London

    Google Scholar 

  62. Verbrugge M, Tate E (2004) Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena. J Power Sources 126(1):236–249

    Article  Google Scholar 

  63. Verdonck N, Chasse A, Pognant-Gros P, Sciarretta A (2010) Automated model generation for hybrid vehicles optimization and control. Oil & Gas Science and Technology-Revue de lInstitut Français du Pétrole 65(1):115–132

    Article  Google Scholar 

  64. Villeneuve A (2004) Dual mode electric infinitely variable transmission. In: SAE World congress, Technical paper 04CVT-19

    Google Scholar 

  65. VW-UP (2013) Volkswagen e-mobility. http://emobility.volkswagen.de

  66. Waltermann P (1996) Modelling and control of the longitudinal and lateral dynamics of a series hybrid vehicle. In: Proceedings of the 1996 IEEE international conference on control applications. IEEE, pp 191–198

    Google Scholar 

  67. Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphite-LiFePO 4 cells. J Power Sources 196(8):3942–3948

    Article  Google Scholar 

  68. Ward J, Moawad A, Kim N, Rousseau A (2012) Light-duty vehicle fuel consumption, cost and market penetration potential by 2020. EVS26, Los Angeles, CA

    Google Scholar 

  69. Wei X (2004) Modeling and control of a hybrid electric drive train for optimum fuel economy, performance and drivability. PhD thesis, Ohio State University

    Google Scholar 

  70. Weng C, Sun J, Peng H (2014) A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J Power Sources 258:228–237

    Article  Google Scholar 

  71. Zhang B, Mi CC, Zhang M (2011) Charge-depleting control strategies and fuel optimization of blended-mode plug-in hybrid electric vehicles. IEEE Trans Veh Technol 60. doi:10.1109/TVT.2011.2122313

  72. Zuurendonk B (2005) Advanced fuel consumption and emission modeling using Willans line scaling techniques for engines. Technische Universiteit Eindhoven, Department Mechanical Engineering Dynamics and Control Technology Group, Technical report

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Böhme .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Böhme, T.J., Frank, B. (2017). Modeling Hybrid Vehicles as Switched Systems. In: Hybrid Systems, Optimal Control and Hybrid Vehicles. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-51317-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51317-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51315-7

  • Online ISBN: 978-3-319-51317-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics