Skip to main content

A Weighted Bootstrap Procedure for Divergence Minimization Problems

  • Conference paper
  • First Online:
Analytical Methods in Statistics (AMISTAT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 193))

Included in the following conference series:

Abstract

Sanov-type results hold for some weighted versions of empirical measures, and the rates for those Large Deviation principles can be identified as divergences between measures, which in turn characterize the form of the weights. This correspondence is considered within the range of the Cressie–Read family of statistical divergences, which covers most of the usual statistical criterions. We propose a weighted bootstrap procedure in order to estimate these rates. To any such rate we produce an explicit procedure which defines the weights, therefore replacing a variational problem in the space of measures by a simple Monte Carlo procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say a function is proper if its domain is non void.

  2. 2.

    The closedness of \(\varphi \) means that if \(a_{\varphi }\) or \(b_{\varphi }\) are finite numbers then \(\varphi (x)\) tends to \(\varphi (a_{\varphi })\) or \(\varphi (b_{\varphi })\) when \(x\downarrow a_{\varphi }\) or \(x\uparrow b_{\varphi }\), respectively.

  3. 3.

    We say a function \(\varphi \) is lower semi-continuous if the level sets \(\left\{ x\text { such that } \varphi (x)\le \alpha \right\} \), \(\alpha \in \mathbb {R}\) are closed.

References

  1. Broniatowski, M., Keziou, A.: Divergences and duality for estimation and test under moment condition models. J. Stat. Plann. Inference 142(9), 2554–2573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broniatowski, M., Decurninge, A.: Estimation for models defined by conditions on their L-moments. IEEE Trans. Inf. Theory. doi:10.1109/TIT.2016.2586085

  3. Ruschendorf, L.: Projections of probability measures. Statistics 18(1), 123–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 85–108 (1963)

    Google Scholar 

  5. Csiszár, I., Gamboa, F., Gassiat, E.: MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inf. Theory 45(7), 2253–2270 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Csiszár, I.: On topology properties of f-divergences. Studia Sci. Math. Hungar. 2, 329–339 (1967)

    MathSciNet  MATH  Google Scholar 

  8. Liese, F., Vajda, I.: Convex statistical distances. With German, French and Russian summaries. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 95. BSB B. G. Teubner Verlagsgesellschaft, pp. 224. Leipzig (1987). ISBN: 3-322-00428-7

    Google Scholar 

  9. Broniatowski, M., Keziou, A.: Minimization of \(\varphi \)-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43(4), 403–442 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Cressie, N., Read, T.R.C.: Multinomial goodness-of-fit tests. J. Roy. Stat. Soc. Ser. B 46(3), 440–464 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Broniatowski, M., Keziou, A.: Parametric estimation and tests through divergences and the duality technique. J. Multivar. Anal. 100(1), 16–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keziou, A.: Dual representation of \(\varphi \)-divergences and applications. C. R. Math. Acad. Sci. Paris 336(10), 857–862 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Owen, A.: Empirical likelihood ratio confidence regions. Ann. Stat. 18(1), 90–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertail, P.: Empirical likelihood in some semiparametric models. Bernoulli 12(2), 299–331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiménez, R., Shao, Y.: On robustness and efficiency of minimum divergence estimators. Test 10(2), 241–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beran, R.: Minimum Hellinger distance estimates for parametric models. Ann. Stat. 5(3), 445–463 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindsay, B.G.: Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann. Stat. 22(2), 1081–1114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar, R.: Tyrrell Convex Analysis, Princeton Mathematical Series, vol. 28, pp. xviii+451. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  19. Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. Wiley Series in Probability and Mathematical Statistics, pp. ix+238. Wiley, Ltd., Chichester (1978)

    Google Scholar 

  20. Trashorras, J., Wintenberger, O.: Large deviations for bootstrapped empirical measures. Bernoulli 20(4), 1845–1878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Najim, J.: A Cramer type theorem for weighted random variables. Electron. J. Probab. 7 (2002)

    Google Scholar 

  22. Broniatowski, M. Weighted sampling, maximum likelihood and minimum divergence estimators. In: Geometric science of information, Lecture Notes in Computer Science, vol. 8085, pp. 467–478. Springer, Heidelberg (2013)

    Google Scholar 

  23. Barbe, P., Bertail, P.: The Weighted Bootstrap, Lecture Notes in Statistics. Springer, New York (1995)

    Google Scholar 

  24. Letac, G., Mora, M.: Natural real exponential families with cubic variance functions. Ann. Stat. 18(1), 1–37 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tweedie, M.C.K.: Functions of a statistical variate with given means, with special reference to Laplacian distributions. Proc. Camb. Philos. Soc. 43, 41–49 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jørgensen, B.: Exponential dispersion models. With discussion and a reply by the author. J. Roy. Stat. Soc. Ser. B 49(2), 127–162 (1987)

    Google Scholar 

  27. Morris, C.N.: Natural exponential families with quadratic variance functions. Ann. Stat. 10(1), 65–80 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bar-Lev, S.K., Enis, P.: Reproducibility and natural exponential families with power variance functions. Ann. Stat. 14(4), 1507–1522 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feller, W.: An Introduction to Probability Theory and its Applications, Vol. II, 2nd edn., pp. xxiv+669. Wiley, Inc., New York (1971)

    Google Scholar 

  30. Groeneboom, P., Oosterhoff, J., Ruymgaart, F.H.: Large deviation theorems for empirical probability measures. Ann. Probab. 7(4), 553–586 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Read, T.R.C., Cressie, N.A.C.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer Series in Statistics, pp. xii+211. Springer, New York (1988). ISBN: 0-387-96682-X

    Google Scholar 

  32. Mason, D.M., Newton, M.A.: A rank statistic approach to the consistency of a general bootstrap. Ann. Stat. 20, 1611–1624 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hoadley, A.B.: On the probability of large deviations of functions of several empirical cdf’s. Ann. Math. Stat. 38, 360–381 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Withers, C.S., Nadarajah, S.: On the compound Poisson-gamma distribution. Kybernetika (Prague) 47(1), 15–37 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Several Applications of Divergence Criteria in Continuous Families, to appear Kybernetika (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Broniatowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Broniatowski, M. (2017). A Weighted Bootstrap Procedure for Divergence Minimization Problems. In: Antoch, J., Jurečková, J., Maciak, M., Pešta, M. (eds) Analytical Methods in Statistics. AMISTAT 2015. Springer Proceedings in Mathematics & Statistics, vol 193. Springer, Cham. https://doi.org/10.1007/978-3-319-51313-3_1

Download citation

Publish with us

Policies and ethics