Skip to main content

Passivity-Based Control of Mechanical Systems

  • Chapter
  • First Online:
Feedback Stabilization of Controlled Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 473))

Abstract

Stabilization of mechanical systems by shaping their energy function is a well-established technique whose roots date back to the work of Lagrange and Dirichlet. Ortega and Spong in 1989 proved that passivity is the key property underlying the stabilization mechanism of energy shaping designs and the, now widely popular, term of passivity-based control (PBC) was coined. In this chapter, we briefly recall the history of PBC of mechanical systems and summarize its main recent developments. The latter includes: (i) an explicit formula for one of the free tuning gains that simplifies the computations, (ii) addition of PID controllers to robustify and make constructive the PBC design and to track ramp references, (iii) use of PBC to solve the position feedback global tracking problem, and (iv) design of robust and adaptive speed observers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Remark 5.6 of [10].

  2. 2.

    To avoid cluttering the notation we call this additional signal also u.

  3. 3.

    Recall that \({d \nabla V_d \over dt}=\nabla ^2 V_d M^{-1}p\).

  4. 4.

    To avoid cluttering we use the same symbol to denote the energy function in all cases.

  5. 5.

    See Sect. 7.5.1 for a robust adaptive version of the I&I momenta observer.

  6. 6.

    The notation for the momenta is different from the one used in Sect. 7.4, but is consistent with the one used in [56].

  7. 7.

    See Eqs. (6) and (7) of [67] for the definition of these symbols and the proof of this fact.

References

  1. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.M.: Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936–1955 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ailon, A., Ortega, R.: An observer-based controller for robot manipulators with flexible joints. Syst. Control Lett. 21(4), 329–335 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Astolfi, A., Ortega, R., Venkataraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auckly, D., Kapitanski, L.: On the \(\lambda \)-equations for matching control laws. SIAM J. Control Optim. 41(5), 1372–1388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auckly, D., Kapitanski, L., White, W.: Control of nonlinear underactuated systems. Commun. Pure Appl. Math. 53(3), 354–369 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blankenstein, G., Ortega, R., van der Schaft, A.J.: The matching conditions of controlled Lagrangians and interconnection and damping assignment passivity based control. Int. J. Control 75(9), 645–665 (2002)

    Google Scholar 

  8. Bloch, A., Leonard, N., Marsden, J.: Controlled Lagrangians and the stabilization of mechanical systems I: the first matching theorem. IEEE Trans. Autom. Control 45(12), 2253–2270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bloch, A.M., Chang, D.E., Leonard, N., Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping. IEEE Trans. Autom. Control 46(10), 1556–1571 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrnes, C., Isisdori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, D.E.: Generalization of the IDA–PBC method for stabilization of mechanical systems. In: The 18th Mediterranean Conference on Control and Automation, pp. 226–230. Marrakech, Morocco (2010)

    Google Scholar 

  12. Chang, D.E.: On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems. Regular Chaotic Dyn. 19(5), 556–575 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, D.E., Bloch, A.M., Leonard, N.E., Marsden, J.E., Woolsey, C.A.: The equivalence of controlled Lagrangian and controlled Hamiltonian systems for simple mechanical systems. ESAIM: Control Optim. Calc. Var. 8, 393–422 (2002)

    Google Scholar 

  14. Cisneros, R., Mancilla-David, F., Ortega, R.: Passivity-based control of a grid-connected small-scale windmill with limited control authority. IEEE J. Emerg. Sel. Top. Power Electr. 1(4), 2168–6777 (2013)

    Google Scholar 

  15. Crasta, N., Ortega, R., Pillai, H.: On the matching equations of energy shaping controllers for mechanical systems. Int. J. Control 88(9), 1757–1765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dirksz, D., Scherpen, J.: Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48(6), 1045–1056 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Do, K.D., Pan, J.: Underactuated ships follow smooth paths with integral actions and without velocity measurements for feedback: theory and experiments. IEEE Trans. Control Syst. Technol. 14(2), 308–322 (2006)

    Article  Google Scholar 

  18. Do, K.D., Jiang, Z.P., Pan, J.: A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots. IEEE Trans. Robot. Autom. 20(3), 589–594 (2004)

    Article  Google Scholar 

  19. Donaire, A., Junco, S.: On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45(8), 1910–1916 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Donaire, A., Mehra, R., Ortega, R., Satpute, S., Romero, J.G., Kazi, F., Singh, N.M.: Shaping the energy of mechanical systems without solving partial differential equations. IEEE Trans. Autom. Control 61(4), 1051–1056 (2016)

    Google Scholar 

  21. Donaire, A., Ortega, R., Romero, J.G.: Simultaneous interconnection and damping assignment passivity–based control of mechanical systems using dissipative forces. Syst. Control Lett. 94, 118–126 (2016)

    Google Scholar 

  22. Donaire, A., Romero, J.G., Ortega, R., Siciliano, B., Crespo, M.: Robust IDA–PBC for underactuated mechanical systems subject to matched disturbances. Int. J.Robust Nonlinear Control (to appear) (2017)

    Google Scholar 

  23. Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H. (eds.): Modeling and Control of Complex Physical System: The Port-Hamiltonian Approach. Springer, Berlin (2009)

    MATH  Google Scholar 

  24. Fradkov, A.L.: Synthesis of an adaptive system for linear plant stabilization. Autom. Remote Control 35(12), 1960–1966 (1974)

    MATH  Google Scholar 

  25. Fujimoto, K., Sugie, T.: Canonical transformations and stabilization of generalized Hamiltonian systems. Syst. Control Lett. 42(3), 217–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grillo, S., Marsden, J.E., Nair, S.: Lyapunov constraints and global asymptotic stabilization. J. Geom. Mech. 3(2), 145–196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hatanaka, T., Chopra, N., Fujita, M., Spong, M.W.: Passivity-Based Control and Estimation in Networked Robotics. Springer International, Cham, Switzerland (2015)

    Book  MATH  Google Scholar 

  28. Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE Trans. Autom. Control 25(5), 708–711 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jonckeere, E.: Lagrangian theory of large scale systems. In: European Conference on Circuit Theory and Design, The Hague, The Netherlands, pp. 626–629 (1981)

    Google Scholar 

  30. Kelly, R.: A simple set–point robot controller by using only position measurement. In: IFAC World Congress, Sydney, Australia, pp. 173–176 (1994)

    Google Scholar 

  31. Kelly, R., Ortega, R.: Adaptive control of robot manipulators: an input–output approach. In: IEEE International Conference on Robotics and Automation, PA, USA, pp. 699–703 (1988)

    Google Scholar 

  32. Kelly, R., Carelli, R., Ortega, R.: Adaptive motion control design of robot manipulators: an input-output approach. Int. J. Control 49(12), 2563–2581 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kelly, R., Ortega, R., Ailon, A., Loria, A.: Global regulation of flexible joints robots using approximate differentiation. IEEE Trans. Autom. Control 39(6), 1222–1224 (1994)

    Article  MATH  Google Scholar 

  34. Koditschek, D.E.: Natural motion of robot arms. In: IEEE Conference on Decision and Control, Las Vegas, USA, pp. 733–735 (1984)

    Google Scholar 

  35. Koditschek, D.E.: Robot planning and control via potential functions. In: Khatib, O., Craig, J.J., Lozano-Pérez, T. (eds.) The Robotics Review 1, pp. 349–367. The MIT Press, Cambridge (1989)

    Google Scholar 

  36. Landau, I.D.: Adaptive Control: The Model Reference Approach. Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  37. Lewis, A.: Notes on energy shaping. In: IEEE Conference on Decision and Control, Paradise Island, Bahamas, pp. 4818–4823 (2004)

    Google Scholar 

  38. Loria, A.: Observers are unnecessary for output-feedback control of Lagrangian systems. IEEE Trans. Autom. Control 61(4), 905–920 (2016)

    Article  MathSciNet  Google Scholar 

  39. Mahindrakar, A.D., Astolfi, A., Ortega, R., Viola, G.: Further constructive results on IDA-PBC of mechanical systems: the Acrobot example. Int. J. Robust Nonlinear Control 16, 671–685 (2006)

    Article  MATH  Google Scholar 

  40. Monroy, A., Alvarez-Icaza, L., Espinosa-Perez, G.: Passivity-based control for variable speed constant frequency operation of a DFIG wind turbine. Int. J. Control 81(9), 1399–1407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moylan, P., Anderson, B.D.O.: Nonlinear regulator theory and an inverse optimal control problem. IEEE Trans. Autom. Control 18(5), 460–465 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nunna, K., Sassano, M., Astolfi, A.: Constructive interconnection and damping assignment for port-controlled Hamiltonian systems. IEEE Trans. Autom. Control 60(9), 2350–2361 (2015)

    Article  MathSciNet  Google Scholar 

  43. Nuño, E., Ortega, R., Basañez, L.: An adaptive controller for nonlinear teleoperators. Automatica 46(2), 155–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ortega, R.: Passivity properties for stabilization of cascaded nonlinear systems. Automatica 27(2), 423–424 (1991)

    Google Scholar 

  45. Ortega, R.: Applications of input–output techniques to control problems. In: European Control Conference, Grenoble, France, pp. 1307–1313 (1991)

    Google Scholar 

  46. Ortega, R., Borja, P.: New results on control by interconnection and energy–balancing passivity–based control of port–Hamiltonian systems. In: IEEE Conference on Decision and Control, Los Angeles, USA, pp. 2346–2351 (2014)

    Google Scholar 

  47. Ortega, R., García-Canseco, E.: Interconnection and damping assignment passivity-based control: a survey. Eur. J. Control 10, 432–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ortega, R., Romero, J.G.: Robust integral control of port-Hamiltonian systems: the case of non-passive outputs with unmatched disturbances. Syst. Control Lett. 61(1), 11–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ortega, R., Spong, M.W.: Adaptive motion control of rigid robots: a tutorial. Automatica 25(6), 877–888 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ortega, R., Rodriguez, A., Espinosa, G.: Adaptive stabilization of non-linearizable systems under a matching condition. In: American Control Conference, San Diego, USA, pp. 67–72 (1990)

    Google Scholar 

  51. Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H.: Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications. Springer, London (1998)

    Book  Google Scholar 

  52. Ortega, R., Spong, M.W., Gomez, F., Blankenstein, G.: Stabilization of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  53. Ortega, R., van der Schaft, A., Castaños, F., Astolfi, A.: Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Trans. Autom. Control 53(11), 2527–2542 (2008)

    Article  MathSciNet  Google Scholar 

  54. Paden, B., Panja, R.: Globally asymptotically stable PD+ controller for robot manipulators. Int. J. Control 4, 1697–1712 (1988)

    Article  MATH  Google Scholar 

  55. Rodriguez, A., Ortega, R.: Adaptive stabilization of nonlinear systems: the non–feedback–linearizable case. In: IFAC World Congress, Tallinn, USSR, pp. 121–124 (1990)

    Google Scholar 

  56. Romero, J.G., Ortega, R.: Two globally convergent adaptive speed observers for mechanical systems. Automatica 60, 7–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Romero, J.G., Donaire, A., Ortega, R.: Robust energy shaping control of mechanical systems. Syst. Control Lett. 62(9), 770–780 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Romero, J.G., Ortega, R., Sarras, I.: A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Trans. Autom. Control 60(3), 818–823 (2015)

    Article  MathSciNet  Google Scholar 

  59. Romero, J.G., Ortega, R., Donaire, A.: Energy shaping of mechanical systems via PID control and extension to constant speed tracking. IEEE Trans. Autom. Control 61(11), 3551–3556 (2016)

    Google Scholar 

  60. Ryalat, M., Laila, D., Torbati, M.: Integral IDA–PBC and PID–like control for port–controlled Hamiltonian systems. In: American Control Conference, Chicago, USA, pp. 5365–5370 (2015)

    Google Scholar 

  61. Sarras, I., Acosta, J.A., Ortega, R., Mahindrakar, A.: Constructive immersion and invariance stabilization for a class of underactuated mechanical systems. Automatica 49(5), 1442–1448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Slotine, J., Li, W.: Adaptive manipulator control: a case study. IEEE Trans. Autom. Control 33(11), 995–1003 (1988)

    Article  MATH  Google Scholar 

  63. Spong, M.W.: Partial feedback linearization of underactuated mechanical systems. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, Germany, pp. 314–321 (1994)

    Google Scholar 

  64. Stramigioli, S., Maschke, B., van der Schaft, A.: Passive output feedback and port interconnection. In: IFAC Symposium on Nonlinear Control Systems, Enschede, The Netherlands, pp. 613–618 (1998)

    Google Scholar 

  65. Takegaki, M., Arimoto, S.: A new feedback for dynamic control of manipulators. Trans. ASME: J. Dyn. Syst. Meas. Control 12, 119–125 (1981)

    MATH  Google Scholar 

  66. van der Schaft, A.: \(L_2\)-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  67. Venkatraman, A., Ortega, R., Sarras, I., van der Schaft, A.: Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Trans. Autom. Control 55(5), 1059–1074 (2010)

    Article  MathSciNet  Google Scholar 

  68. Viola, G., Ortega, R., Banavar, R., Acosta, J.A., Astolfi, A.: Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Trans. Autom. Control 52(6), 1093–1099 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE Control Syst. Mag. 27(6), 46–99 (2007)

    Article  MathSciNet  Google Scholar 

  70. Woolsey, C., Bloch, A., Leonard, N., Marsden, J.: Physical dissipation and the method of controlled Lagrangians. In: European Control Conference, Porto, Portugal, pp. 2570–2575 (2001)

    Google Scholar 

Download references

Acknowledgements

R. Ortega is supported by Government of Russian Federation (grant 074-U01, GOSZADANIE 2014/190 (project 2118)), the Ministry of Education and Science of Russian Federation (project 14.Z50.31.0031). The work of J.G. Romero is supported by a public grant overseen by the French National Research Agency (ANR) as part of the Investissement d’Avenir program, through the iCODE Institute, research project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeo Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ortega, R., Donaire, A., Romero, J.G. (2017). Passivity-Based Control of Mechanical Systems. In: Petit, N. (eds) Feedback Stabilization of Controlled Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 473. Springer, Cham. https://doi.org/10.1007/978-3-319-51298-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51298-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51297-6

  • Online ISBN: 978-3-319-51298-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics