Skip to main content

Numerical Results for Spectra and Traces of the Transfer Operator for Character Deformations

  • Chapter
  • First Online:
Selberg Zeta Functions and Transfer Operators

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2139))

  • 1080 Accesses

Abstract

In Chap. 7 we discussed how to evaluate the Selberg zeta function \(Z^{\left (n\right )}(\beta,\chi )\) by computing the spectrum of the transfer operators

$$\displaystyle{\tilde{\mathcal{L}}_{\beta,\chi }^{\left (n\right )} = \left (\begin{array}{cc} 0 &\mathcal{L}_{\beta,+1,\chi }^{\left (n\right )} \\ \mathcal{L}_{\beta,-1,\chi }^{\left (n\right )} & 0 \end{array} \right ),\mathcal{L}_{\beta,+1,\chi }^{\left (n\right )}\mathcal{L}_{\beta,-1,\chi }^{\left (n\right )}\text{ and }\mathcal{P}_{ k}\mathcal{L}_{\beta,+1,\chi }^{\left (n\right )}.}$$

To obtain a numerical approximation of the spectrum of the transfer operator \(\mathcal{L}_{\beta,\varepsilon,\chi }^{\left (n\right )}\) in Proposition  7.5

$$\displaystyle\begin{array}{rcl} \left [\mathcal{L}_{\beta,\varepsilon,\chi }^{\left (n\right )}\vec{f}\left (z\right )\right ]_{ i}& =& \sum _{k=0}^{\infty }\sum _{ s=0}^{\infty }\sum _{ m=1}^{n}\sum _{ j=1}^{\mu _{n} }\left [U^{\chi }\left (ST^{m\varepsilon }\right )\right ]_{ i,j}\frac{f_{j}^{\left (k\right )}\left (1\right )} {k!} \sum _{t=0}^{k}\binom{k}{t}\frac{\left (-1\right )^{k-t+s}} {n^{2\beta +t+s}} {}\\ & & \frac{1} {s!} \frac{\varGamma (2\beta +t+s)} {\varGamma (2\beta + t)} \varPhi \!\left (\chi \left (r_{j}^{\left (n\right )}T^{n\varepsilon }\left (r_{ j}^{\left (n\right )}\right )^{-1}\right ),2\beta +t+s, \frac{m+1} {n} \right )\!\left (z-1\right )^{s}, {}\\ \end{array}$$

we approximate this operator by the matrix \(\mathcal{M}_{\beta,\varepsilon,\chi }^{\left (n\right ),N}\) in Proposition  7.7

$$\displaystyle\begin{array}{rcl} \left [\left (\mathcal{M}_{\beta,\varepsilon,\chi }^{\left (n\right ),N}\right )_{ s,k}\right ]_{i,j}& =& \frac{1} {s!}\sum _{t=0}^{k}\binom{k}{t}\frac{\left (-1\right )^{k-t+s}} {n^{2\beta +t+s}} \frac{\varGamma (2\beta + t + s)} {\varGamma (2\beta + t)} \sum _{m=1}^{n}\left [U^{\chi }\left (ST^{m\varepsilon }\right )\right ]_{ i,j} {}\\ & & \varPhi \left (\chi \left (r_{j}^{\left (n\right )}T^{n\varepsilon }\left (r_{ j}^{\left (n\right )}\right )^{-1}\right ),2\beta + t + s, \frac{m + 1} {n} \right ) {}\\ \end{array}$$

and compute its spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baladi, V., Holschneider, M.: Approximation of nonessential spectrum of transfer operators. Nonlinearity 12, 525–538 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandtlow, O., Jenkinson, O.: Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions. Adv. Math. 218, 902–925 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, C.H., Mayer, D.: The transfer operator approach to Selberg’s zeta function and modular and Maass wave forms for \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). In: Hejhal, D., Gutzwiller, M., et al. (eds.) Emerging Applications of Number Theory, pp. 72–142. Springer, New York (1999)

    Google Scholar 

  4. Fraczek, M., Mayer, D.: Symmetries of the transfer operator for Γ 0(n) and a character deformation of the Selberg zeta function for Γ 0(4). Algebra Number Theory 6 (3), 587–610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hejhal, D.: The Selberg Trace Formula for \(\mathrm{PSL}\!\left (2, \mathbb{R}\right )\), Volume 1. Lecture Notes in Mathematics, vol. 548. Springer, Berlin/Heidelberg (1976)

    Google Scholar 

  6. Lewis, J., Zagier, D.: Period functions for Maass wave forms, I. Ann. Math. 153, 191–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mayer, D.: On the thermodynamic formalism for the Gauss map. Commun. Math. Phys. 130 (2), 311–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Strömberg, F.: Computation of Selberg Zeta Functions on Hecke Triangle Groups. arXiv:0804.4837v1 (2008, preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fraczek, M.S. (2017). Numerical Results for Spectra and Traces of the Transfer Operator for Character Deformations. In: Selberg Zeta Functions and Transfer Operators. Lecture Notes in Mathematics, vol 2139. Springer, Cham. https://doi.org/10.1007/978-3-319-51296-9_8

Download citation

Publish with us

Policies and ethics