Advertisement

Introduction

  • Markus Szymon Fraczek
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2139)

Abstract

In recent years the application of the transfer operator method in the study of Selberg zeta functions and the spectral theory of hyperbolic spaces has made significant progress, in both analytical investigations and numerical investigations. We consider transfer operators for the geodesic flow on surfaces of constant negative curvature, therefore systems where a particle is moving freely on such a surface with constant velocity.

Keywords

Partition Function Transfer Operator Critical Line Congruence Subgroup Symbolic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Adler, R., Flatto, L.: Cross section map for the geodesic flow on the modular surface. Contemp. Math. 26, 9–24 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 4.
    Artin, E.: Ein mechanisches System mit quasi-ergodischen Bahnen. Abh. Math. Sem. d. Hamburgischen Universität 3, 170–175 (1924) (Also in Collected Papers, Addison-Wesley, pp. 499–501 (1965))Google Scholar
  3. 5.
    Atkin, A.O.L., Lehner, J.: Hecke operators on Γ 0(m). Math. Ann. 185 (2), 134–160 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 6.
    Avelin, H.: Deformation of Γ 0(5)-cusp forms. Math. Comput. 76, 361–384 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 7.
    Avelin, H.: Computations of Eisenstein series on Fuchsian groups. Math. Comput. 77, 1779–1800 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 8.
    Baladi, V.: Positive Transfer Operators and Decay of Correlations. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  7. 10.
    Banach, S.: Théorie des opérations linéaires. Ed. S. Banach, B. Knaster, K. Kuratowski, S. Mazurkiewicz, W. Sierpiński i H. Steinhaus, Monografie Matematyczne, vol. 1. Instytut Matematyczny Polskiej Akademi Nauk (1932)Google Scholar
  8. 13.
    Booker, A., Strömbergsson, A., Venkatesh, A.: Effective computation of Maass cusp forms. IMRN 2006, 1–34 (2006)zbMATHGoogle Scholar
  9. 15.
    Borthwick, D.: Distribution of resonances for hyperbolic surfaces. Exp. Math. 23 (1), 25–45 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 16.
    Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95 (2), 429–460 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 17.
    Bowen, R., Chazottes, J. (eds.) Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd edn. Springer, Berlin/Heidelberg (2008)zbMATHGoogle Scholar
  12. 18.
    Bowen, R., Ruelle, D.: The Ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 19.
    Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. Publications Mathématiques de L’IHÉS 50 (1), 153–170 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 22.
    Bruggeman, R., Fraczek, M., Mayer, D.: Perturbation of zeros of the Selberg zeta-function for Γ 0(4). Exp. Math. 22 (3), 217–252 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 23.
    Bruggeman, R., Lewis, J., Zagier, D.: Function theory related to the group \(\mathrm{PSL}\!\left (2, \mathbb{R}\right )\). Dev. Math. 28, 107–201 (2013)MathSciNetzbMATHGoogle Scholar
  16. 24.
    Bruggeman, R., Lewis, J., Zagier, D.: Period Functions for Maass Forms and Cohomology. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (2015)zbMATHGoogle Scholar
  17. 29.
    Chang, C.H., Mayer, D.: The transfer operator approach to Selberg’s zeta function and modular and Maass wave forms for \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). In: Hejhal, D., Gutzwiller, M., et al. (eds.) Emerging Applications of Number Theory, pp. 72–142. Springer, New York (1999)Google Scholar
  18. 30.
    Chang, C.H., Mayer, D.: An extension of the thermodynamic formalism approach to Selberg’s zeta function for general modular groups. In: Fiedler, B. (eds.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 523–562. Springer, Berlin/New York (2001)CrossRefGoogle Scholar
  19. 31.
    Cornfeld, I., Fomin, S., Sinai, Y.: Ergodic Theory. Grundlehren der mathematischen Wissenschaften, vol. 245. Springer, New York (1982)Google Scholar
  20. 33.
    Deshouillers, J., Iwaniec, H., Phillips, R., Sarnak, P.: Maass cusp forms. Proc. Natl. Acad. Sci. USA 82, 3533–3534 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 34.
    Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Press, Cambridge/Boulder (2003)zbMATHGoogle Scholar
  22. 35.
    Diu, B., Guthmann, C., Lederer, D., Roulet, B.: Grundlagen der Statistischen Physik. de Gruyter (1994)Google Scholar
  23. 37.
    Eckmann, J., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 38.
    Efrat, I.: Dynamics of the continued fraction map and the spectral theory of \(\mathrm{SL}\!\left (2, \mathbb{Z}\right )\). Invent. math. 114, 207–218 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 40.
    Farmer, D., Lemurell, S.: Deformations of Maass forms. Math. Comput. 74 (252), 1967–1982 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 42.
    Fraczek, M.: Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen. Diploma Thesis, Clausthal University (2006)Google Scholar
  27. 44.
    Fraczek, M., Mayer, D.: Symmetries of the transfer operator for Γ 0(n) and a character deformation of the Selberg zeta function for Γ 0(4). Algebra Number Theory 6 (3), 587–610 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 45.
    Fraczek, M., Mayer, D., Mühlenbruch, T.: A realization of the Hecke algebra on the space of period functions for Γ 0(n). J. reine angew. Math. 603, 133–163 (2007)MathSciNetzbMATHGoogle Scholar
  29. 48.
    Fried, D.: The zeta functions of Ruelle and Selberg. Ann. Sci. Ec. Norm. Sup. 19, 491–517 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 49.
    Fried, D.: Symbolic dynamics for triangle groups. Invent. Math. 125, 487–521 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 52.
    Gottlieb, D., Shu, C.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39 (4), 644–668 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 56.
    Guillope, L., Lin, K., Zworski, M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245 (1), 149–175 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 57.
    Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodésique. J. Math. Pures Appl. 4, 27–73 (1898)zbMATHGoogle Scholar
  34. 60.
    Hejhal, D.: Eigenvalues of the Laplacian for Hecke triangle groups. Mem. Am. Math. Soc. 97 (496) (1992). http://www.ams.org/books/memo/0469/
  35. 61.
    Hejhal, D.: On the calculation of Maass cusp forms. In: Bolte, J., Steiner, F. (eds.) Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, pp. 175–186. Cambridge University Press, Cambridge, UK (2011)CrossRefGoogle Scholar
  36. 63.
    Hilgert, J., Mayer, D., Movasati, H.: Transfer operators for Γ 0(n) and the Hecke operators for period functions of \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). Math. Proc. Camb. Philos. Soc. 139, 81–116 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 64.
    Hove, L.V.: Sur L’intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension. Physica 16 (2), 137–143 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 67.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei 31 (1), 253–258 (1925)Google Scholar
  39. 68.
    Iwaniec, H.: Spectral Methods of Automorphic Forms. American Mathematical Society, Providence (2002)CrossRefzbMATHGoogle Scholar
  40. 69.
    Judge, C.: On the existence of maass cusp forms on hyperbolic surfaces with cone points. J. Am. Math. Soc. 8 (3), 715–759 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 70.
    Kac, M.: On the partition function of a one-dimensinal lattice gas. Phys. Fluids 2, 8–12 (1959)CrossRefzbMATHGoogle Scholar
  42. 75.
    Lasota, A., Mackey, M.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  43. 76.
    Lenz, W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Physikalische Zeitschrift 21, 613–615 (1920)Google Scholar
  44. 78.
    Lewis, J., Zagier, D.: Period functions for Maass wave forms, I. Ann. Math. 153, 191–258 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 80.
    Lieb, E., Mattis, D.: Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles. Perspectives in Physics: A Series of Reprint Collections. Academic Press, New York (1966)Google Scholar
  46. 81.
    Manin, Y., Marcolli, M.: Continued fractions, modular symbols and non commutative geometry. Selecta Math. (N.S.) 8, 475–520 (2002)Google Scholar
  47. 82.
    Margulis, G.: On Some Aspects of the Theory of Anosov Systems. With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg (2004)Google Scholar
  48. 84.
    Matthies, C., Steiner, F.: Selberg’s ζ function and the quantization of chaos. Phys. Rev. A 44 (12), R7877–R7880 (1991)MathSciNetCrossRefGoogle Scholar
  49. 87.
    Mayer, D.: The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Physics, vol. 123. Springer, Berlin/Heidelberg (1980)Google Scholar
  50. 88.
    Mayer, D.: On the thermodynamic formalism for the Gauss map. Commun. Math. Phys. 130 (2), 311–333 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 89.
    Mayer, D.: Continued fractions and related transformations, chap. 7 In: Bedford, T., et al. (eds.) Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, pp. 175–222. Oxford University Press, Oxford/New York (1991)Google Scholar
  52. 90.
    Mayer, D.: The thermodynamic formalism approach to Selberg’s zeta function for \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). Bull. Am. Math. Soc. (N.S.) 25 (1), 55–60 (1991)Google Scholar
  53. 91.
    Mayer, D.: Transfer operators, the Selberg zeta function and the Lewis-Zagier theory of period functions. In: Bolte, J., Steiner, F. (eds.) Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, pp. 143–174. Cambridge University Press, Cambridge, UK (2011)CrossRefGoogle Scholar
  54. 92.
    Mayer, D., Mühlenbruch, T., Strömberg, F.: The transfer operator for Heck triangle groups. In: Discrete and Continuous Dynamical Systems - Series A, vol. 32, number 7, pp. 2453–2484 (2012)Google Scholar
  55. 94.
    Mayer, D., Strömberg, F.: Symbolic dynamics for the geodesic flow on Hecke surfaces. J. Mod. Dyn. 2 (4), 581–627 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 96.
    Möller, M., Pohl, A.: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant. Ergod. Theory Dyn. Syst. 33 (1), 247–283 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 97.
    Morita, T.: Markov systems and transfer operators associated with cofinite Fuchsian groups. Ergod. Theory Dyn. Syst. 17 (5), 1147–1181 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 99.
    Mühlenbruch, T.: Hecke operators on period functions for Γ 0(n). J. Number Theory 118, 208–235 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 100.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)MathSciNetzbMATHGoogle Scholar
  60. 101.
    Petridis, Y., Risager, M.: Dissolving cusp forms: higher order Fermi’s golden rules. Mathematika 59, 269–301 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 102.
    Phillips, R., Sarnak, P.: On cusp forms for co-finite subgroups of \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). Invent. Math. 80, 339–364 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 103.
    Phillips, R., Sarnak, P.: The spectrum of fermat curves. Geom. Funct. Anal. 1, 80–146 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 104.
    Phillips, R., Sarnak, P.: Cusp forms for character varieties. Geom. Funct. Anal. 4, 93–118 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 107.
    Pollicott, M.: Some applications of thermodynamic formalism to manifolds with constant negative curvature. Adv. Math. 85 (2), 161–192 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 109.
    Ratner, M.: Markov partitions for Anosov flows on 3-dimensional manifolds. Mat. Zam. 6, 693–704 (1969)Google Scholar
  66. 110.
    Ratner, M.: Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math. 6, 92–114 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 111.
    Ruelle, D.: Generalized zeta-functions for Axiom A basic sets. Bull. Am. Math. Soc. 82 (1), 153–156 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 113.
    Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Inventiones Mathematicae 34 (3), 231–242 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 114.
    Ruelle, D.: Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge/New York (2004)CrossRefzbMATHGoogle Scholar
  70. 117.
    Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)MathSciNetzbMATHGoogle Scholar
  71. 118.
    Selberg, A.: Atle Selberg Collected Papers, vol. 1, chap. Harmonic Analysis (Göttingen lectures), 1954, pp. 626–674. Springer, Springer, Berlin/Heidelberg (1989)Google Scholar
  72. 119.
    Selberg, A.: Remarks on the distribution of poles of Eisenstein series. In: Festschrift in Honor of I.I. Piatetski-Shapiro, vol. 2, pp. 251–278 (1990) (Also in Collected Papers, vol. 2, pp. 15–45. Springer, Springer, Berlin/Heidelberg (1991))Google Scholar
  73. 120.
    Series, C.: The modular surface and continued fractions. J. Lond. Math. Soc. (2) 31, 69–80 (1985)Google Scholar
  74. 121.
    Sinai, Y.: Classical dynamical systems with countably-multiple Lebesque spectrum. Izv. Akad. Nauk SSSR Ser. Mat. 30, 15–68 (1966)MathSciNetGoogle Scholar
  75. 122.
    Sinai, Y.: Introduction to Ergodic Theory. Princeton University Press, Princeton (1977)Google Scholar
  76. 123.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73 (6), 747–817 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 126.
    Strömberg, F.: Computation of Selberg Zeta Functions on Hecke Triangle Groups. arXiv:0804.4837v1 (2008, preprint)Google Scholar
  78. 127.
    Strömberg, F.: Maass Waveforms on (Γ 0(N), χ) (Computational Aspects). In: Bolte, J., Steiner, F. (eds.) Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, pp. 187–228. Cambridge University Press, Cambridge, UK (2011)CrossRefGoogle Scholar
  79. 129.
    Then, H.: Maass cusp forms for large eigenvalues. Math. Comput. 74 (249), 363–381 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 133.
    Winkler, A.: Cusp forms and Hecke groups. Journal für die reine und angewandte Mathematik (Crelles Journal) (386), 187–204 (1988)Google Scholar
  81. 134.
    Wolpert, S.: Disappearance of cusp forms in special families. Ann. Math. 139 (2), 239–291 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Markus Szymon Fraczek
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations