Skip to main content

Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

At present, the majority of thermodynamic cycles of heat engines are high-temperature cycles that are realized by internal combustion engines, steam and gas turbines, etc. (Cengel, Boles in Thermodynamics: an engineering approach, 4th edn. McGray-Hill Inc., New York, 2002). Traditional heat engine cycles are mainly based on burning of organic fuel that may result in dramatic increase of CO2 emissions and global warming. The world community has realized the gravity of these problems and taken initiatives to alleviate or reverse this situation. Fulfilment of these initiatives requires, first of all, the replacement of fossil fuels with renewable energy sources (e.g. the sun, wind, ambient heat, natural water basins, soil, air). These new heat sources have significantly lower temperature potential than that achieved by burning of fossil fuels which opens a niche for applying adsorption technologies for heat transformation and storage (Pons et al in Int J Refrig 22:5–17, 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A:

Adsorber

Ad-HEx:

Adsorbent–heat exchanger

AHP:

Adsorption heat pump

AHT:

Adsorptive heat transformer

C:

Condenser, thermal capacity J K−1

COP:

Coefficient of performance

d:

Thickness, m

∆F:

Adsorption potential, J mol−1

E:

Evaporator

LTJ:

Large Temperature Jump method

LPJ:

Large Pressure Jump method

h:

Convective heat transfer coefficient, W m−2 K−1

HEx:

Heat exchanger

HMT:

Heat and mass transfer

m:

Dry adsorbent mass, kg

P:

Pressure, Pa

PD:

Pressure driven

Q:

Thermal energy, J

R:

Universal gas constant, J mol−1 K−1

S:

Solid, entropy J kg−1, heat transfer surface area, m2

SP:

Specific power, W kg−1

T:

Temperature, K

TD:

Temperature driven

U:

Overall heat transfer coefficient, W m−2 K−1

V:

Vapour

w:

Water uptake, g g-1

W:

Work, J

Δ:

Differential operator

λ:

Thermal conductivity, W m−1 K−1

0:

Initial stage, saturation vapour

ads:

Adsorbent/adsorption

c:

Cooling

con:

Condensation

des:

Desorption

ef:

Effective

ev:

Evaporation

f:

Fluid

h:

Heating

H:

High

L:

Low

M:

Medium

met:

Metal

us:

Useful

w:

Wall/solid side

References

  1. Yu.A Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 4th edn. (McGray-Hill Inc., New York, 2002)

    Google Scholar 

  2. M. Pons, F. Meunier, G. Cacciola, R. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)

    Article  Google Scholar 

  3. S. Carnot (1824) Reflections on the Motive Power of Fire, in ed. by E. Mendoza (Dover, New York, 1960)

    Google Scholar 

  4. T.X. Li, R.Z. Wang, H. Li, Progress in the development of solid e gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog. Energy Combust. Sci. 40(1), 1–58 (2013)

    MathSciNet  Google Scholar 

  5. I. Chandra, V.S. Patwardhan, Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recover. Syst. CHP 10, 527–537 (1990)

    Article  Google Scholar 

  6. Yu.I Aristov, Adsorptive transformation of ambient heat: a new cycle. Appl. Therm. Eng. 124, 521–524 (2017)

    Article  Google Scholar 

  7. Yu.I Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)

    Article  Google Scholar 

  8. B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)

    Article  Google Scholar 

  9. Yu.I Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)

    Article  Google Scholar 

  10. A. Frazzica, A. Sapienza, A. Freni, Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Appl. Therm. Eng. 40, 1–8 (2014)

    Google Scholar 

  11. D.I. Tchernev, D.T. Emerson, High-efficiency regenerative zeolite heat pump. ASHRAE Trans. 14, 2024–2032 (1988)

    Google Scholar 

  12. S. Szarzynski, Y. Feng, M. Pons, Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig. 20(6), 390–401 (1997)

    Article  Google Scholar 

  13. F. Meunier, Theoretical performances of solid adsorbent cascading cycles using the zeolite - water and active carbon-methanol pairs: four case studies. Heat Recov. Syst. CHP 6, 491–498 (1986)

    Article  Google Scholar 

  14. S.V. Shelton, Solid adsorbent heat pump system. U.S. patent 4610148 (1986)

    Google Scholar 

  15. Yu.I Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)

    Article  Google Scholar 

  16. I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)

    Article  Google Scholar 

  17. B. Zajaczkowski, Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appl. Therm. Eng. 100, 744–752 (2016)

    Article  Google Scholar 

  18. D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption, Willey (1994), 376p

    Google Scholar 

  19. A. Frazzica, B. Dawoud, R.E. Critoph, Theoretical analysis of several working pairs for adsorption heat transformer application, in Proceeding of HPC Conference, Nottingham (2016)

    Google Scholar 

  20. Angelo Freni, Gaetano Maggio, Alessio Sapienza, Andrea Frazzica, Giovanni Restuccia, Salvatore Vasta, Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 104, 85–95 (2016)

    Article  Google Scholar 

  21. A. Chakraborty, B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces. Langmuir 25, 2204–2211 (2009)

    Article  Google Scholar 

  22. H. Stach, J. Mugele, J. Jaenchen, E. Weiller, Influence of cycle temperatures on the thermo-chemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11, 393–404 (2005)

    Article  Google Scholar 

  23. S.K. Henninger, F.P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)

    Article  Google Scholar 

  24. J. Jaenchen, D. Ackermann, H. Stach, W. Broesicke, Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004)

    Article  Google Scholar 

  25. G. Alefeld, R. Radermacher, Heat Conversion Systems (CRC Press, Boca Raton, 1994)

    Google Scholar 

  26. YuI Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Eng. Sci. 63, 2907–2912 (2008)

    Article  Google Scholar 

  27. M.M. Dubinin, Theory of physical adsorption of gases and vapour and adsorption properties of adsorbents of various natures and porous structures. Bull. Div. Chem. Soc. 1072–1078 (1960)

    Google Scholar 

  28. W.M. Raldow, W.E. Wentworth, Chemical heat pumps - a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979)

    Article  Google Scholar 

  29. V.E. Sharonov, YuI Aristov, Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008)

    Article  Google Scholar 

  30. F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18, 715–729 (1998)

    Article  Google Scholar 

  31. L.Z. Zhang, L. Wang, Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 24, 605–624 (1999)

    Article  Google Scholar 

  32. L. Marletta, G. Maggio, A. Freni, M. Ingrasciotta, G. Restuccia, A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)

    Article  MATH  Google Scholar 

  33. J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)

    Article  Google Scholar 

  34. I.S. Girnik, Yu.I Aristov, Making adsorptive chillers more fast and efficient: the effect of bi-dispersed adsorbent bed. Appl. Therm. Eng. 106, 254–256 (2016)

    Article  Google Scholar 

  35. YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)

    Article  Google Scholar 

  36. L. Bonaccorsi, A. Freni, E. Proverbio, G. Restuccia, F. Russo, Zeolite coated cooper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006)

    Article  Google Scholar 

  37. D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984)

    Google Scholar 

  38. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)

    MATH  Google Scholar 

  39. Yu.I Aristov, Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32(4), 675–686 (2009)

    Article  Google Scholar 

  40. YuI Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Eng. Japan 40, 1242–1251 (2007)

    Article  Google Scholar 

  41. YuI Aristov, “Heat from cold” – a new cycle for upgrading the ambient heat: adsorbent optimal from the dynamic point of view. Appl. Therm. Eng. 124, 1189–1193 (2017)

    Article  Google Scholar 

  42. M.M. Tokarev, A.D. Grekova, L.G. Gordeeva, YuI Aristov, A new cycle “Heat from Cold” for upgrading the ambient heat: the testing a lab-scale prototype with the composite sorbent CaClBr/silica. Appl. Energy 211, 136–145 (2018)

    Article  Google Scholar 

  43. L.G. Gordeeva, YuI Aristov, Composites “salt inside porous matrix” for adsorption heat transformation: a current state of the art and new trends. Int. J. Low Carbon Technol. 7(4), 288–302 (2012)

    Article  Google Scholar 

  44. S. Henninger, H. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009)

    Article  Google Scholar 

  45. F. Meunier, F. Poyelle, M.D. LeVan, Second-law analysis of adsorptive refrigeration cycles: the role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997)

    Article  Google Scholar 

  46. H.-M. Henning, Solar assisted air conditioning in buildings—an overview. Appl. Therm. Eng. 27, 1734–1749 (2007)

    Article  Google Scholar 

  47. J.J. Guilleminot, F. Meunier, B. Mischler, Etude de cycles intermittents `a adsorption solide pour la r´efrig´eration solaire. Revue de Physique Appliquee 15, 441–452 (1980)

    Article  Google Scholar 

  48. Greg, S, K. Sing, Adsorption, Specific Surface, Porosity (Academic Press, N.Y, 1967), p. 306

    Google Scholar 

  49. F. Meunier, Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles. Heat Recover. Syst. CHP 5, 133–141 (1985)

    Article  Google Scholar 

  50. I.S. Glaznev, D.S. Ovoshchnikov, YuI Aristov, Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: the effect of isobar shape. Int. J. Heat Mass Transf. 52(7–8), 1774–1777 (2009)

    Article  Google Scholar 

  51. YuI Aristov, B. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption under real operating conditions of AHPs: experiment. Int. J. Heat Mass Transf. 51, 4966–4972 (2008)

    Article  Google Scholar 

  52. I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage. Int. J. HMT (2017) (submitted)

    Google Scholar 

  53. R. Strauss, K. Schallenberg, K.F. Knocke, Measurement of the kinetics of water vapor asorption into solid zeolite layers, in Proceedings of International Symposium on Solid Sorption Refrigeration, Paris, pp. 227–231 (1992)

    Google Scholar 

  54. B. Dawoud, Y. Aristov, Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Sapienza .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapienza, A., Frazzica, A., Freni, A., Aristov, Y. (2018). Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects. In: Dynamics of Adsorptive Systems for Heat Transformation. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51287-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51287-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51285-3

  • Online ISBN: 978-3-319-51287-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics