Skip to main content

Computer-Aided Drug Discovery from Marine Compounds: Identification of the Three-Dimensional Structural Features Responsible for Antimalarial Activity

  • Chapter
  • First Online:
Blue Biotechnology

Abstract

An integrated computational approach, based on molecular dynamics/mechanics, semi-empirical, and DFT calculations as well as dynamic docking studies, has been employed to gain insight into the mechanism of action of new antimalarial agents characterized by the scaffold of the marine compounds plakortin and aplidinone. The results of this approach show that these molecules, after interaction with Fe(II), likely coming from the heme molecule, give rise to the formation of radical species, that should represent the toxic intermediates responsible for subsequent reactions leading to plasmodium death. The three-dimensional structural requirements necessary for the activity of these new classes of antimalarial agents have been identified and discussed throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both 3,4-cis and 3,4-trans esters 4 possessing one methyl substituent on C3 (R1 = Me) and two propyl substituents on C6 (R2 and R3 = n-propyl), resulted completely inactive (IC50 > 10 mM) against D10 and W2 Pf strains.

References

  • Allouche AR (2011) A graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    Article  CAS  PubMed  Google Scholar 

  • Araujo NC, Barton V, Jones M, Stocks PA, Ward SA, Davies J, Bray PG, Shone AE, Cristiano ML, O’Neill PM (2009) Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg Med Chem Lett 19:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Arav-Boger R, Shapiro TA (2005) Molecular mechanisms of resistance in antimalarial chemotherapy: the unmet challenge. Annu Rev Pharmacol Toxicol 45:565–585

    Article  CAS  PubMed  Google Scholar 

  • Baker J (1986) An algorithm for the location of transition states. J Comput Chem 7:385–395

    Article  CAS  Google Scholar 

  • Beckera K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    Article  Google Scholar 

  • Blank O, Davioud-Charvet E, Elhabiri M (2012) Interactions of the antimalarial drug methylene blue with methemoglobin and heme targets in Plasmodium falciparum: a physico-biochemical study. Antioxid Redox Signaling 17:544–554

    Article  CAS  Google Scholar 

  • Capela R, Cabal GG, Rosenthal PJ, Gut J, Mota MM, Moreira R, Lopes F, Prudencio M (2011) Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob Agents Chemother 55:4698–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ, Dong Y, Matile H, Maurer M, Morizzi J, Nguyen T, Papastogiannidis P, Scheurer C, Shackleford DM, Sriraghavan K, Stingelin L, Tang Y, Urwyler H, Wang X, White KL, Wittlin S, Zhou L, Vennerstrom JL (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 108:4400–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(2065):91

    Google Scholar 

  • Chianese G, Persico M, Yang F, Lin HW, Guo YW, Basilico N, Parapini S, Taramelli D, Taglialatela-Scafati O, Fattorusso C (2014) Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes. Bioorg Med Chem 22:4572–4580

    Article  CAS  PubMed  Google Scholar 

  • Chiodo S, Russo N, Sicilia E (2004) Newly developed basis sets for density functional calculations. J Comput Chem 26:175–183

    Article  Google Scholar 

  • Chishiro T, Shimazaki Y, Tani F, Tachi Y, Naruta Y, Karasawa S, Hayami S, Maeda Y (2003) Isolation and crystal structure of a peroxo-bridged heme-copper complex. Angew Chem Int Ed 42:2788–2791

    Article  CAS  Google Scholar 

  • Coleman RE, Nath AK, Schneider I, Song GH, Klein TA, Milhous WK (1994) Prevention of sporongony of Plasmodium falciparum and P. Berghei in Anopheles stephensi mosquitoes by transmission-blocking antimalarials. Am J Trop Med Hyg 50:646–653

    CAS  PubMed  Google Scholar 

  • Colson AO, Sevilla MD (1995) Ab initio molecular orbital calculations of radicals formed by H and *OH addition to the DNA bases: electron affinities and ionization potentials. J Phys Chem 99:13033–13037

    Article  CAS  Google Scholar 

  • Cosledan F, Fraisse L, Pellet A, Guillou F, Mordmuller B, Kremsner PG, Moreno A, Mazier D, Maffrand JP, Meunier B (2008) Selection of a trioxaquine as an antimalarial drug candidate. Proc Natl Acad Sci U S A 105:17579–17584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    Article  CAS  PubMed  Google Scholar 

  • Davioud-Charvet E, Lanfranchi DA (2011) Subversive substrates of glutathione reductases from Plasmodium falciparum-infected red blood cells as antimalarial agents. In: Selzer P (ed) Drug discovery in infectious diseases, vol 2. Wiley-VCH, Weinheim, Germany, pp 375–396

    Google Scholar 

  • Ding HQ, Karasawa N, Goddard WA III (1992) Atomic level simulations on a million particles: the cell multipole method for Coulomb and London non-bond interactions. J Chem Phys 97:4309–4315

    Article  CAS  Google Scholar 

  • Dodd EL, Bohle DS (2014) Orienting the heterocyclic periphery: a structural model for chloroquine’s antimalarial activity. Chem Commun 50:13765–13768

    Article  CAS  Google Scholar 

  • Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, Sewell BT, Smith PJ, Taylor D, Van Schalkwyk DA, Walden JC (2000) Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J 365:343–347

    Article  Google Scholar 

  • Ehrhardt K, Davioud-Charvet E, Ke H, Vaidya AB, Lanzer M, Deponte M (2013) The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain. Antimicrob Agents Chemother 57:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattorusso C, Persico M, Basilico N, Taramelli D, Fattorusso E, Scala F, Taglialatela-Scafati O (2011) Antimalarials based on the dioxane scaffold of plakortin. A concise synthesis and SAR studies. Bioorg Med Chem 19:312–320

    Article  CAS  PubMed  Google Scholar 

  • Flannery EL, Chatterjee AK, Winzeler EA (2013) Antimalarial drug discovery—approaches and progress towards new medicines. Nat Rev Microbiol 11:849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1; Gaussian, Inc. Wallingford, CT

    Google Scholar 

  • Ginsburg H, Ward SA, Bray PG (1999) An integrated model of chloroquine action. Parasitol Today 15:357–360

    Article  CAS  PubMed  Google Scholar 

  • Grellepois F, Grellier P, Bonnet-Delpon D, Begue JP (2005) Design, synthesis and antimalarial activity of trifluoromethylartemisinin-mefloquine dual molecules. ChemBioChem 6:648–652

    Article  CAS  PubMed  Google Scholar 

  • Griller D, Howard JA, Marriott PR, Scaiano JC (1981) Absolute rate constants for the reactions of tert-butoxyl, tert-butylperoxyl, and benzophenone triplet with amines: the importance of a stereoelectronic effect. J Am Chem Soc 103:619–623

    Article  CAS  Google Scholar 

  • Guin PS, Das S, Mandal PC (2011) Electrochemical reduction of quinones in different media: a review. Int J Electrochem 2011:816202–816222

    Article  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Davis CB, Wang B (2010) Evaluation of drug candidates for preclinical development: pharmacokinetics, metabolism, pharmaceutics, and toxicology. Wiley, New Jersey, pp 1–289

    Google Scholar 

  • Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HHY, Williams ID, Prosperi D, Melato S, Coghi P, Monti D (2010) Facile oxidation of leucomethylene blue anddihydroflavins by artemisinins: relationship with flavoenzyme functionand antimalarial mechanism of action. ChemMedChem 5:1282–1299

    Article  CAS  PubMed  Google Scholar 

  • Holtje HD, Fattorusso C (1998) Construction of a model of the Candida albicans lanosterol 14-alpha-demethylase active site using the homology modelling technique. Pharm Acta Helv 72:271–277

    Article  CAS  PubMed  Google Scholar 

  • Imperatore C, Persico M, Aiello A, Luciano P, Guiso M, Sanasi MF, Taramelli D, Parapini S, Cebrián-Torrejón G, Doménech-Carbó A, Fattorusso C, Menna M (2015) Marine inspired antiplasmodial thiazinoquinones: synthesis, computational studies and electrochemical assays. RSC Advances 5:70689–70702

    Article  CAS  Google Scholar 

  • Jung M, Kim H, Lee K, Park M (2003) Naturally occurring peroxides with biological activities. Mini Rev Med Chem 3:159–165

    Article  CAS  PubMed  Google Scholar 

  • Kapetanaki S, Varotsis C (2001) Fourier transform infrared investigation of non-heme Fe(III) and Fe(II) decomposition of artemisinin and of a simplified trioxane alcohol. J Med Chem 44:3150–3156

    Article  CAS  PubMed  Google Scholar 

  • Kerns EH, Di L (2008) Drug-Like properties: concepts, structure design and methods: from ADME to toxicity optimization. Academic Press, Amsterdam, pp 1–526

    Google Scholar 

  • Krishna S, Uhlemanna AC, Haynes RK (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updates 7:233–244

    Article  CAS  Google Scholar 

  • Laurent SA, Loup C, Mourgues S, Robert A, Meunier B (2005) Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes. ChemBioChem 6:653–658

    Article  CAS  PubMed  Google Scholar 

  • Liu YP (2001) Applications of effective core potentials and density functional theory to the spin states of iron porphyrin. J Chem Inf Comput Sci 41:22–29

    Article  CAS  PubMed  Google Scholar 

  • Lombardo M, Sonawane DP, Quintavalla A, Trombini C, Dhavale DD, Taramelli D, Corbett Y, Rondinelli F, Fattorusso C, Persico M, Taglialatela-Scafati O (2014) Optimized synthesis and antimalarial activity of 1,2-dioxane-4-carboxamides. Eur J Org Chem 2014:1607–1614

    Article  CAS  Google Scholar 

  • Loup C, Lelievre J, Benoit-Vical F, Meunier B (2007) Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. Antimicrob Agents Chemother 51:3768–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Ingold KU (1980) Knetic applications of electron paramagnetic resonance spectroscopy. 35. The search for a dialkyl-aminyl rearrangement. Ring opening of N-cyclobutyl-N-n-propyl-aminyl. J Am Chem Soc 102:328–331

    Article  CAS  Google Scholar 

  • Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl function group and alkane molecules. J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  • McCann PP, Bacchi CJ, Hanson WL, Cain GD, Nathan HC, Hutner SH, Sjoerdsma A (1981) Effect on parasitic protozoa of α-difluoromethylornithine an inhibitor of ornithine carboxylase. Adv Polyamine Res 3:97–110

    CAS  Google Scholar 

  • Mercer AE, Copple IM, Maggs JL, O’Neill PM, Park BK (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286:987–996

    Article  CAS  PubMed  Google Scholar 

  • Meunier B, Robert A (2010) Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res 43:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Müller S (2004) Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53:1291–1305

    Article  PubMed  Google Scholar 

  • Muller T, Johann L, Jannack B, Bruckner M, Lanfranchi DA, Bauer H, Sanchez C, Yardley V, Deregnaucourt C, Schrevel J, Lanzer M, Schirmer RH, Davioud-Charvet E (2011) Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones a new strategy to combat malarial parasites. J Am Chem Soc 133:11557–11571

    Article  CAS  PubMed  Google Scholar 

  • Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemand J, Burger P, Verlinden BK, Reader J, Joubert AM, Kaiser A, Louw AI, Kirk K, Phanstiel O, Birkholtz LM (2013) Anthracene-polyamine conjugates inhibit in vitro proliferation of intraerythrocytic Plasmodium falciparum parasites. Antimicrob Agents Chemother 57:2874–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill OM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964

    Article  PubMed  Google Scholar 

  • O’Neill PM, Barton VE, Ward SA, Chadwick J (2012) 4-Aminoquinolines: chloroquine, amodiaquine and next-generation analogues. In: Treatment and prevention of malaria, Springer, pp 19–44

    Google Scholar 

  • Parr RG, Szentplay L, Lui S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  • Persico M, Parapini S, Chianese G, Fattorusso C, Lombardo M, Petrizza L, Quintavalla A, Rondinelli F, Basilico N, Taramelli D, Trombini C, Fattorusso E, Taglialatela-Scafati O (2013) Further optimization of plakortin pharmacophore: structurally simple 4-oxymethyl-1,2-dioxanes with promising antimalarial activity. Eur J Med Chem 70:875–886

    Article  CAS  PubMed  Google Scholar 

  • Persico M, Quintavalla A, Rondinelli F, Trombini C, Lombardo M, Fattorusso C, Azzarito V, Taramelli D, Parapini S, Corbett Y, Chianese G, Fattorusso E, Taglialatela-Scafati O (2011) A new class of antimalarial dioxanes obtained through a simple two-step synthetic approach: rational design and structure-activity relationship studies. J Med Chem 54:8526–8540

    Article  PubMed  Google Scholar 

  • Pischel U, Nau WM (2001) Switch-over in photochemical reaction mechanism from hydrogen abstraction to exciplex-induced quenching: interaction of triplet-excited versus singlet-excited acetone versus cumyloxyl radicals with amines. J Am Chem Soc 123:9727–9737

    Article  CAS  PubMed  Google Scholar 

  • Posner GH, Cumming JN, Ploypradith P, Oh CH (1995) Evidence for Fe(IV): O in the molecular mechanism of action of the trioxane antimalarial artemisinin. J Am Chem Soc 117:5885–5886

    Article  CAS  Google Scholar 

  • Reguera RM, Tekwani BL, Balana-Fouce R (2005) Polyamine transport in parasites: a potential target for new antiparasitic drug development. Comp Biochem Physiol Part C Toxicol Pharmacol 140:151–164

    Article  Google Scholar 

  • Ruiz E, Cirera J, Alvarez S (2005) Spin density distribution in transition metal complexes. Coord Chem Rev 249:2469–2660

    Article  Google Scholar 

  • Sawyer A, Sullivan E, Mariam YH (1996) A semiempirical computational study of electron transfer reactivity of one- vs. two-ring model systems for anthracycline pharmacophores. I. A rationale for mode of action. J Comput Chem 17:204–225

    Article  CAS  Google Scholar 

  • Sonawane DP, Persico M, Corbett Y, Chianese G, Di Dato A, Fattorusso C, Taglialatela-Scafati O, Taramelli D, Trombini C, Dhavale DD, Quintavalla A, Lombardo M (2015) New antimalarial 3-methoxy-1,2-dioxanes: optimization of cellular pharmacokinetics and pharmacodynamics properties by incorporation of amino and N-heterocyclic moieties at C4. RSC Adv 5:72995–73010

    Article  CAS  Google Scholar 

  • Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    Article  CAS  PubMed  Google Scholar 

  • Taglialatela-Scafati O, Fattorusso E, Romano A, Scala F, Barone V, Cimino P, Stendardo E, Catalanotti B, Persico M, Fattorusso C (2010) Insight into the mechanism of action of plakortins, simple 1,2-dioxane antimalarials. Org Biomol Chem 8:846–856

    Article  CAS  PubMed  Google Scholar 

  • Tanko JM, Friedline R, Suleman NK, Castagnoli N (2001) Tert-Butoxyl as a model for radicals in biological systems: caveat emptor. J Am Chem Soc 123:5808–5809

    Article  CAS  PubMed  Google Scholar 

  • Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602

    Article  CAS  PubMed  Google Scholar 

  • Wang DY, Wu YL (2000) A possible antimalarial action mode of qinghaosu (artemisinin) series compounds. Alkylation of reduced glutathione by C-centered primary radicals produced from antimalarial compound qinghaosu and 12-(2,4-dimethoxyphenyl)-12-deoxoqinghaosu. Chem Commun 22:2193–2194

    Article  Google Scholar 

  • Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KS, Lin Q (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whaun JM, Brown ND (1985) Ornithine decarboxylase inhibition and the malaria-infected red cell: a model for polyamine metabolism and growth. J Pharmacol Exp Ther 233:507–511

    CAS  PubMed  Google Scholar 

  • Wu YK, Wu ZY, Wu YL (1999) Interaction of qinghaosu (artemisinin) with cysteine sulfhydryl mediated by traces of non-heme iron. Angew Chem Int Ed Engl 38:2580–2582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The content of this chapter was reproduced from references: Persico et al. (2013) with permission from Elsevier (http://dx.doi.org/10.1016/j.ejmech.2013.10.050); Chianese et al. (2014) with permission from Elsevier (http://dx.doi.org/10.1016/j.bmc.2014.07.034); Lombardo et al. (2014) with permission from Wiley-VCH Verlag GmbH & Co. KGaA (http://dx.doi.org/10.1002/ejoc.201301394); Sonawane et al. (2015) with permission from the Royal Society of Chemistry (http://dx.doi.org/10.1039/c5ra10785g); Imperatore et al. (2015) with permission from the Royal Society of Chemistry (http://dx.doi.org/10.1039/c5ra09302c). This work was supported by the following grants: POR Campania FESR 2007–2013 FARMABIONET (B25C1300023007), MIUR—FIRB 2012 RBFR12WB3W, and EU Project Bluegenics (Grant 311848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Fattorusso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fattorusso, C., Persico, M., Rondinelli, F., Orteca, N., Di Dato, A. (2017). Computer-Aided Drug Discovery from Marine Compounds: Identification of the Three-Dimensional Structural Features Responsible for Antimalarial Activity. In: Müller, W., Schröder, H., Wang, X. (eds) Blue Biotechnology. Progress in Molecular and Subcellular Biology(), vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-51284-6_4

Download citation

Publish with us

Policies and ethics