Skip to main content

Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 55))

Abstract

The rapid emergence of resistant bacteria during the last 20 years has stimulated research efforts in order to overcome this thorny problem. Marine sponges and their associated bacteria, which have been proven to be a source of bioactive natural products, have appeared as a promising opportunity to identify new antibiotic compounds. An overview of the major antibacterial compounds isolated from marine sponges and/or their associated bacteria is presented in this chapter, highlighting new potential antibiotics.

Fei He, Linh H. Mai, Johan Gardères, Amjad Hussain, Vesna Erakovic Haber, and Marie-Lise Bourguet-Kondracki are equally contributed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, Hentschel U, Edrada-Ebel R, Ahmed SA (2015) Antichlamydial sterol from the red sea sponge Callyspongia aff. Implexa. Planta Med 81:382–387

    Article  CAS  PubMed  Google Scholar 

  • Abdjul DB, Yamazaki H, Kanno S, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M (2015) Structures and biological evaluations of agelasines isolated from the Okinawan marine sponge Agelas nakamurai. J Nat Prod 78:1428–1433

    Article  CAS  PubMed  Google Scholar 

  • Ankisetty S, Amsler CD, McClintock JB, Baker BJ (2004) Further membranolide diterpenes from the antarctic sponge Dendrilla membranosa. J Nat Prod 67(7):1172–1174

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Sobou M, Vilchéze C, Baughn A, Hashizume H, Pruksakorn P, Ishida S, Matsumoto M, Jacobs WR, Kobayashi M (2008) Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. Bioorg Med Chem 16:6732–6736

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Han C, Yamano Y, Setiawan A, Kobayashi M (2014) Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. J Nat Med 68(2):372–376

    Article  CAS  PubMed  Google Scholar 

  • Arevabini C, Crivelenti YD, de Abreu MH, Bitencourt TA, Santos MFC, Berlinck RGS, Hajdu E, Beleboni RO, Fachin AL, Marin M (2014) Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea). Nat Prod Commun 9(1):33–36

    Google Scholar 

  • Avilés E, Rodríguez AD, Vicente J (2013) Two rare-class tricyclic diterpenes with antitubercular activity from the caribbean sponge Svenzea flava. application of vibrational circular dichroism spectroscopy for determining absolute configuration. J Org Chem 78(22):11294–11301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldwin JE, Claridge TDW, Culshaw AJ, Heupel FA, Lee V, Spring DR, Whitehead RC (1999) Studies on the biomimetic synthesis of the manzamine alkaloids. Chem Eur J 5:3154–3161

    Article  Google Scholar 

  • Barnathan G (2009) Non-methylene-interrupted fatty acids from marine invertebrates: occurrence, characterization and biological properties. Biochimie 91(6):671–678

    Article  CAS  PubMed  Google Scholar 

  • Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    PubMed  Google Scholar 

  • Bernard L, Schäfer H, Joux F, Courties C, Muyzer G, Lebaron P (2000) Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat Microb Ecol 23:1–11

    Article  Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52(7):716–722

    Article  CAS  PubMed  Google Scholar 

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Google Scholar 

  • Boonlarppradab C, Faulkner DJ (2007) Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J Nat Prod 70(5):846–848

    Article  CAS  PubMed  Google Scholar 

  • Bourguet-Kondracki ML, Lacombe F, Guyot M (1999) Methanol adduct of puupehenone, a biologically active derivative from the marine sponge Hyrtios species. J Nat Prod 62(9):1304–1305

    Article  CAS  PubMed  Google Scholar 

  • Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafieri F, Fattorusso E, Taglialatela-Scafati O (1998) Novel bromopyrrole alkaloids from the sponge Agelas dispar. J Nat Prod 61(9):122–125, 1171–1173

    Google Scholar 

  • Carroll AR, Duffy S, Avery VM (2009) Citronamides A and B, tetrapeptides from the australian sponge Citronia astra. J Nat Prod 72(4):764–768

    Google Scholar 

  • Cheng Z-B, Xiao H, Fan C-Q, Lu Y-N, Zhang G, Yin S (2013) Bioactive polyhydroxylated sterols from the marine sponge Haliclona crassiloba. Steroids 78(14):1353–1358

    Google Scholar 

  • Cheung RCF, Ng TB, Wong JH (2015) Marine peptides: bioactivities and applications. Mar Drugs 13:4006–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RJ, Garson MJ, Hooper JNA (2001) Antifungal alkyl amino alcohols from the tropical marine sponge Haliclona n. sp. J Nat Prod 64:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Copp BR, Ireland CM, Barrows LR (1991) Wakayin: a novel pyrroloiminoquinone alkaloid from the ascidian Calvalina species. J Org Chem 56:4596–4597

    Article  CAS  Google Scholar 

  • Da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040

    Article  PubMed  CAS  Google Scholar 

  • Dürst UN, Bruder E, Egloff L, Wüst J, Schneider J, Hirzel HO (1991) Micrococcus luteus: a rare pathogen of valve prosthesis endocarditis. Z Kardiol 80(4):294–298

    PubMed  Google Scholar 

  • Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24(21):4939–4942

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Molinski TF, Harper MK, Sullivan BW, Faulkner DJ, Parkanyi L, Clardy J (1988) Haliclonadiamine, an antimicrobial alkaloid from the sponge Haliclona sp. Tetrahedron Lett 29:3427–3428

    Article  Google Scholar 

  • Fusetani N, Takahashi M, Matsunaga S (1994) Topsentiasterol sulfates, antimicrobial sterol sulfates possessing novel side chains, from a marine sponge, Topsentia sp. Tetrahedron 50(26):7765–7770

    Article  CAS  Google Scholar 

  • Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R (2015) The state of world’s antibiotics 2015. CDDEP

    Google Scholar 

  • Glasner C, Albiger B, Buist G, Tambić Andrašević A, Canton R, Carmeli Y, Friedrich AW, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Nordmann P, Poirel L, Rossolini GM, Seifert H, Vatopoulos A, Walsh T, Woodford N, Donker T, Monnet DL, Grundmann H (2013) European Survey on Carbapenemase-producing Enterobacteriaceae (ESCAPE) Working Group. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill 18(28), pii: 20525

    Google Scholar 

  • Gotsbacher M, Karuso P (2015) New antimicrobial bromotyrosine analogues from the sponge Pseudoceratina purpurea and its predator Tylodina corticalis. Mar Drugs 13(3):1389–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros E, Al-Mourabit A, Martin MT, Sorres J, Vacelet J, Frederich M, Aknin M, Kashman Y, Gauvin-Bialecki A (2014) Netamines H-N, tricyclic alkaloids from the marine sponge Biemna laboutei and their antimalarial activity. J Nat Prod 77(4):818–823

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Sharma U, Schulz TC, McLean AB, Robins AJ, West LM (2012) Bicyclic C21 terpenoids from the marine sponge Clathria compressa. J Nat Prod 75:1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gushiken M, Kagiyama I, Kato H, Kuwana T, Losung F, Mangindaan REP, de Voogd NJ, Tsukamoto S (2015) Manadodioxans A–E: polyketide endoperoxides from the marine sponge Plakortis bergquistae. J Nat Med 6:1–6

    Google Scholar 

  • Hagiwara K, Garcia Hernandez JE, Harper MK, Carroll A, Motti CA, Awaya J, Nguyen H-Y (2015) Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge. J Nat Prod 78:325–329

    Article  CAS  PubMed  Google Scholar 

  • Hamann MT, Scheuer PJ (1991) Cyanopuupehenol, an antiviral metabolite of a sponge of the order Verongida. Tetrahedron lett 32(41):5671–5672

    Google Scholar 

  • Handayani D, Edrada RA, Proksch P, Wray V, Witte L, Van Soest RWM, Kunzmann A, Soedarsono (1997) Four new bioactive polybrominated diphenyl ethers of the sponge Dysidea herbacea from West Sumatra, Indonesia. J Nat Prod 60(12):1313–1316

    Google Scholar 

  • Harrington C, Reen F, Mooij M, Stewart F, Chabot J-B, Guerra A, Glöckner F, Nielsen K, Gram L, Dobson A, Adams C, O’Gara F (2014) Characterisation of non-autoinducing tropodithietic acid (TDA) production from marine sponge Pseudoivibrio species. Mar Drugs 12(12):5960–5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper GJ, Davies-Coleman MT, Kelly-Borges M, Coetzee PS (1996) New alkaloids from a south African Latrunculid sponge. Tetrahedron Lett 37(39):7135–7138

    Article  CAS  Google Scholar 

  • Iinuma Y, Kozawa S, Ishiyama H, Tsuda M, Fukushi E, Kawabata J, Fromont J, Kobayashi J (2005) Gesashidine A, a β-carboline alkaloid with an imidazole ring from a Thorectidae sponge. J Nat Prod 68(7):1109–1110

    Article  CAS  PubMed  Google Scholar 

  • Iwagawa T, Kaneko M, Okamura H, Nakatani M, Van Soest RWM (1998) New alkaloids from the Papua New Guinean sponge Agelas nakamurai. J Nat Prod 61(10):1310–1312

    Article  CAS  PubMed  Google Scholar 

  • Jang KH, Kang GW, Jeon JE, Lim C, Lee HS, Sim CJ, Oh KB, Shin J (2009) Haliclonin A, a new macrocyclic diamide from the sponge Haliclona sp. Org Lett 11(8):1713–1716

    Article  CAS  PubMed  Google Scholar 

  • Jiao WH, Huang XJ, Yang JS, Yang F, Piao SJ, Gao H, Li J, Ye WC, Yao XS, Chen WS, Lin HW (2012) Dysidavarones A-D, new sesquiterpene quinones from the marine sponge Dysidea avara. Org Lett 14(1):202–205

    Article  CAS  PubMed  Google Scholar 

  • Kang HK, Seo CH, Park Y (2015) Marine peptides and their anti-infective activities. Mar Drugs 13:618–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keffer JL, Plaza A, Bewley CA (2009) Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Org Lett 11(5):1087–1090

    Google Scholar 

  • Kim CK, Song IH, Park HY, Lee YJ, Lee HS, Sim CJ, Oh DC, Oh KB, Shin J (2014) Suvanine sesterterpenes and deacyl irciniasulfonic acids from a tropical Coscinoderma sp. sponge. J Nat Prod 77(6):1396–1403

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Araki A, Ito J, Mikami Y, Fromont J, Kobayashi J (2008) Nagelamides M and N, new bromopyrrole alkaloids from sponge Agelas species. Tetrahedron 64:10810–10813

    Article  CAS  Google Scholar 

  • Kubota T, Araki A, Yasuda T, Tsuda M, Fromont J, Aoyama K, Mikami Y, Wälchli MR, Kobayashi J (2009) Benzosceptrin C, a new dimeric bromopyrrole alkaloid from sponge Agelas sp. Tetrahedron Lett 50:7268–7270

    Article  CAS  Google Scholar 

  • Kubota T, Iwai T, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2012) Agelasines O-U, new diterpene alkaloids with a 9-N-methyladenine unit from a marine sponge Agelas sp. Tetrahedron 68:9738–9744

    Article  CAS  Google Scholar 

  • Kubota T, Ishiguro Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2013a) Manzamenones L-N, new dimeric fatty-acid derivatives from an Okinawan marine sponge Plakortis sp. Bioorg Med Chem Lett 23(1):244–247

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Kamijyo Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2013b) Zamamiphidin A, a new manzamine related alkaloid from an Okinawan marine sponge Amphimedon sp. Org Lett 15(3):610–612

    Article  CAS  PubMed  Google Scholar 

  • Kumar MKM, Naik D, Satyavathi J, Ramana K, Varma HR, Nagasree PP, Desaraju KS, Rao VD (2014) Denigrins A-C: new antitubercular 3,4-diarylpyrrole alkaloids from Dendrilla nigra. Nat Prod Res 28(12):888–894

    Article  CAS  Google Scholar 

  • Kunz AL, Labes A, Wiese J, Bruhn T, Bringmann G, Imhoff JF (2014) Nature’s lab for derivatization: new and revised structures of a variety of streptophenazines produced by a sponge-derived Streptomyces strain. Mar Drugs 12(4):1699–1714

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kashiwada Y, Kobayashi J (2014a) Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org Lett 16(15):3916–3918

    Article  CAS  PubMed  Google Scholar 

  • Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kashiwada Y, Kobayashi J (2014b) Agelamadins C-E, bromopyrrole alkaloids comprising oroidin and 3-hydroxykynurenine from a marine sponge Agelas sp. Org Lett 16(19):5176–5179

    Article  CAS  PubMed  Google Scholar 

  • Kusama T, Tanaka N, Takahashi-nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2014c) Bromopyrrole alkaloids from a marine sponge Agelas sp. Chem Pharm Bull 62(5):499–503

    Article  CAS  PubMed  Google Scholar 

  • Laport MS, Santos OC, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10(1):86–105

    Google Scholar 

  • Linington RG, Robertson M, Gauthier A, Finlay BB, MacMillan JB, Molinski TF, Van Soest R, Andersen RJ (2002) Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org Lett 4(23):4089–4092

    Article  CAS  PubMed  Google Scholar 

  • Majik MS, Shirodkar D, Rodrigues C, D’Souza L, Tilvi S (2014) Evaluation of single and joint effect of metabolites isolated from marine sponges, Fasciospongia cavernosa and Axinella donnani on antimicrobial properties. Bioorg Med Chem Lett 24(13):2863–2866

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Yamashita T, Tsukamoto S, Fusetani N (1999) Three new antibacterial alkaloids from a marine sponge Stelletta species. J Nat Prod 62(8):1202–1204

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Okada Y, Fusetani N, Van Soest RWM (2000) An antimicrobial c14 acetylenic acid from a marine sponge Oceanapia species. J Nat Prod 63(5):690–691

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Nishimura S, Fusetani N (2001) Two new antimicrobial lysoplasmanylinositols from the marine sponge Theonella swinhoei. J Nat Prod 64(6):816–818

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Kobayashi H, Van Soest RWM, Fusetani N (2005) Novel bromotyrosine derivatives that inhibit growth of the fish pathogenic bacterium Aeromonas hydrophila, from a marine sponge Hexadella sp. J Org Chem 70:1893–1896

    Google Scholar 

  • Mehbub M, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactivities. Mar Drugs 12(8):4539–4577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitova M, Popov S, Rosa S De (2004) Cyclic peptides from a ruegeria strain of bacteria associated with the sponge Suberites domuncula. J Nat Prod 67(7):1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Mukai H, Kubota T, Aoyama K, Mikami Y, Fromont J, Kobayashi J (2009) Tyrokeradines A and B, new bromotyrosine alkaloids with an imidazolyl-quinolinone moiety from a Verongid sponge. Bioorg Med Chem Lett 19:1337–1339

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Endo M, Tanaka N, Lee GP (1984) Structures of xestospongin A, B, C, D; novel vasodilative compounds from marine sponge Xestospongia exigua. Tetrahedron Lett 25:3227–3230

    Article  CAS  Google Scholar 

  • Nakamura H, Deng S, Kobayashi J, Ohizumi Y (1987) Keramamine A and B, novel antiimicrobial alkaloids from the Okinawan marine sponge Pellina sp. Tetrahedron Lett 28(6):621–624

    Article  CAS  Google Scholar 

  • Nuzzo G, Ciavatta ML, Villani G, Manzo E, Zanfardino A, Varcamonti M, Gavagnin M (2012) Fulvynes, antimicrobial polyoxygenated acetylenes from the mediterranean sponge Haliclona fulva. Tetrahedron 68:754–760

    Article  CAS  Google Scholar 

  • Oh K-B, Mar W, Kim S, Kim J-Y, Lee T-H, Kim J-G, Shin D, Sim CJ, Shin J (2006) Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol Pharm Bull 29(3):570–573

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Hwang B, Kang O-H, Kwon D-Y, Rho J-R (2013) New constituents from the Korean sponge Plakortis simplex. Mar Drugs 11(11):4407–4418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palomo S, González I, De La Cruz M, Martín J, Tormo JR, Anderson M, Hill RT, Vicente F, Reyes F, Genilloud O (2013) Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Mar Drugs 11(4):1071–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR, Orr B, Herald DL, Doubek DL, Tackett L, Schmidt JM, Boyd MR, Pettit RK, Hooper JNA (1996) Isolation and X-ray crystal structure of racemic xestospongin D from the Singapore marine sponge Niphates sp. Bioorg Med Chem Lett 6:1313–1318

    Article  CAS  Google Scholar 

  • Pettit GR, Xu JP, Chapuis JC, Pettit RK, Tackett LP, Doubek DL, Hooper JNA, Schmidt JM (2004) Antineoplastic agents. 520. Isolation and structure of irciniastatins A and B from the Indo-Pacific marine sponge Ircinia ramosa. J Med Chem 47(5):1149–1152

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR, Tang Y, Zhang Q, Bourne GT, Arm CA, Leet JE, Knight JC, Pettit RK, Chapuis J-C, Doubek DL, Ward FJ, Weber C, Hooper JNA (2013) Isolation and structures of axistatins 1–3 from the republic of palau marine sponge Agelas axifera hentschel. J Nat Prod 76(3):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan RW, Barret M, Cotter PD, O’Connor PM, Chen R, Morrissey JP, Dobson ADW, O’Gara F, Barbosa TM (2013) Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar Drugs 11(6):1878–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao S-J, Song Y-L, Jiao W-H, Yang F, Liu X-F, Chen W-S, Han B-N, Lin H-W (2013) Hippolachnin A, a new antifungal polyketide from the South China sea sponge Hippospongia lachne. Org Lett 15(14):3526–3529

    Article  CAS  PubMed  Google Scholar 

  • Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA (2007) Mirabamides A–D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 70(11):1753–1760

    Google Scholar 

  • Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA (2008) Celebesides A−C and theopapuamides B−D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 74(2):504–512

    Google Scholar 

  • Plubrukarn A, Smith DW, Cramer RE, Davidson BS (1997) (2E,9E)-Pyronaamidine 9-(N-methylimine), a new imidazole alkaloid from the northern Mariana islands sponge Leucetta sp. cf. chagosensis. J Nat Prod 60(7):712–715

    Article  CAS  PubMed  Google Scholar 

  • Popov AM, Stekhova SI, Utkina NK, Rebachuk NM (1999) Antimicrobial and cytotoxic activity of sesquiterpenequinones and brominated diphenyl esters. Pharm Chem J 33(2):71–73

    Article  CAS  Google Scholar 

  • Porsby CH, Webber MA, Nielsen KF, Piddock LJ, Gram L (2011) Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. Antimicrob Agents Chemother 55:1332–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnayake AS, Bugni TS, Feng X, Harper MK, Skalicky JJ, Mohammed KA, Andjelic CD, Barrows LR, Ireland CM (2006) Theopapuamide, a cyclic depsipeptide from a Papua New Guinea Lithistid sponge Theonella swinhoei. J Nat Prod 69(11):1582–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Martin J, Harrington C, Dobson ADW, O’Gara F (2014) Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 12(6):3516–3559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roué M, Quévrain E, Domart-Coulon I, Bourguet-Kondracki M-L (2012) Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. J Nat Prod 29:739–751

    Article  CAS  Google Scholar 

  • Russell F, Harmody D, McCarthy PJ, Pomponi SA, Wright AE (2013) Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus. J Nat Prod 76(10):1989–1992

    Google Scholar 

  • Ryu G, Matsunaga S, Fusetani N (1994) Discodermin E, a cytotoxic and antimicrobial tetradecapeptide from the marine sponge Discodermia kiiensis. Tetrahedron Lett 35(44):8251–8254

    Article  CAS  Google Scholar 

  • Santos OCS, Soares AR, Machado FLS, Romanos MTV, Muricy G, Giambiagi-deMarval M, Laport MS (2014) Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett Appl Microbiol 60(2):140–147

    Article  PubMed  CAS  Google Scholar 

  • Satitpatipan V, Suwanborirux K (2004) New nitrogenous germacranes from a Thai marine sponge, Axinyssa N. sp. J Nat Prod 67(3):503–505

    Article  CAS  PubMed  Google Scholar 

  • Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L (2016) In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol 7(1130). doi:10.3389/fmicb.2016.00416

  • Schmalzbauer B, Herrmann J, Müller R, Menche D (2013) Total synthesis and antibacterial activity of dysidavarone A. Org Lett 15(4):964–967

    Article  CAS  PubMed  Google Scholar 

  • Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AJ, Dattelbaum JD, Field JJ, Smart Z, Woolly EF, Barber JM, Heathcott R, Miller JH, Northcote PT (2013) Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation, structure elucidation and antifungal activity. Org Biomol Chem 11(46):8041–8051

    Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Canning CB, Bhargava K, Sun X, Zhu W, Zhou N, Zhang Y, Zhou K (2015a) Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett 25(10):2181–2183

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Sun S, Ference C, Zhu W, Zhou N, Zhang Y, Zhou K (2015b) A potent antimicrobial compound isolated from Clathria cervicornis. Bioorg Med Chem Lett 25(1):67–69

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kubota T, Takahashi-nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2014) Nakijiquinone S and nakijinol C, new meroterpenoids from a marine sponge of the family Spongiidae. Chem Pharm Bull 62:209–212

    Article  CAS  PubMed  Google Scholar 

  • Suzumura K, Yokoi T, Funatsu M, Nagai K, Tanaka K, Zhang H, Suzuki K (2003) YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. J Antibiot 56:129–134

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Kubota T, Ito J, Mikami Y, Fromont J, Kobayashi J (2008) Nakijiquinones G-I, new sesquiterpenoid quinones from marine sponge. Bioorg Med Chem 16(16):7561–7564

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Tanaka N, Kubota T, Ishiyama H, Shibazaki A, Gonoi T, Fromont J, Kobayashi J (2012) Heteroaromatic alkaloids, nakijinamines, from a sponge Suberites sp. Tetrahedron 68(41):8545–8550

    Article  CAS  Google Scholar 

  • Takishima S, Ishiyama A, Iwatsuki M, Otoguro K, Yamada H, Õmura S, Kobayashi H, Van Soest RWM, Matsunaga S (2009) Merobatzelladines A and B, anti-infective tricyclic guanidines from a marine sponge Monanchora sp. Org Lett 11(12):2655–2658

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Asai M, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2013a) Manzamenone O, new trimeric fatty acid derivative from a marine sponge Plakortis sp. Org Lett 15(10):2518–2521

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Kusama T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2013b) Nagelamides X-Z, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org Lett 15:3262–3265

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The PEW charitable trusts (2015) www.pewtrusts.org/antibiotics

  • Tilvi S, Rodrigues C, Naik CG, Parameswaran PS, Wahidhulla S (2004) New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea. Tetrahedron 60(45):10207–10215

    Article  CAS  Google Scholar 

  • Torres YR, Berlinck RGS, Nascimento GGF, Fortier SC, Pessoa C, de Moraes MO (2002) Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloids isolated from the marine sponge Arenosclera brasiliensis. Toxicon 40:885–891

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Shimbo K, Kubota T, Mikami Y, Kobayashi J (1999) Two theonellapeptolide congeners from marine sponge Theonella sp. Tetrahedron 55(34):10305–10314

    Article  CAS  Google Scholar 

  • Tsuda M, Sakuma Y, Kobayashi J (2001) Suberedamines A and B, new bromotyrosine alkaloids from a sponge Suberea species. J Nat Prod 64(7):980–982

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Yohei T, Fromont J, Kobayashi J (2005) Hyrtinadine A, a bis-indole alkaloid from a marine sponge. J Nat Prod 68(8):1277–1278

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto S, Yamashita T, Matsunaga S, Fusetani N (1999) Bistellettadines A and B: two bioactive dimeric stellettadines from a marine sponge Stelletta sp. J Org Chem 64:3794–3795

    Article  CAS  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of unculturable bacteria. FEMS Microbiol Lett 309:1–7

    CAS  PubMed  Google Scholar 

  • Viegelmann C, Parker J, Ooi T, Clements C, Abbott G, Young L, Kennedy J, Dobson ADW, Edrada-Ebel R (2014) Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar Drugs 12(5):2937–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk CA, Lippert H, Lichte E, Köck M (2004) Two new haliclamines from the arctic sponge Haliclona viscosa. Eur J Org Chem 14:3154–3158

    Article  CAS  Google Scholar 

  • Webster NS, Blackall LL (2009) What do we really know about sponge-microbial symbioses? ISME J 3:1–3

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 2012(14):335–346

    Article  CAS  Google Scholar 

  • Webster NS, Thomas T (2016) The sponge hologenome. Mbio.asm.org. 7(2):e00135–16

    Google Scholar 

  • Wei X, Nieves K, Rodríguez AD (2010) Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean sea sponge Neopetrosia proxima. Bioorg Med Chem Lett 20:5905–5908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo JK, Kim CK, Kim SH, Kim H, Oh DC, Oh KB, Shin J (2014) Gombaspiroketals A-C, sesterterpenes from the sponge Clathria gombawuiensis. Org Lett 16(11):2826–2829

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ (2012) Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J Nat Prod 75:1001–1005

    Google Scholar 

  • Yang S-W, Chan T-M, Pomponi S, Chen G, Wright AE, Patel M, Gullo V, Pramanik B, Chu M (2003) A new bicyclic guanidine alkaloid, sch 575948, from a marine sponge, Ptilocaulis spiculifer. J Antibiot (Tokyo) 56(11):970–972

    Article  CAS  Google Scholar 

  • Yang F, Gan J, Liu X, Lin H (2014) Scalarane sesterterpenes from the paracel islands marine sponge Hyrtios. Nat Prod Commun 9(6):763–764

    CAS  PubMed  Google Scholar 

  • Youssef DT, Shaala L, Asfour HZ (2013) Bioactive compounds from the red sea marine sponge Hyrtios species. Mar Drugs 11(4):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef DT, Shaala L, Mohamed G, Badr JM, Bamanie FH, Ibrahim SRM (2014) Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar Drugs 12(4):1911–1923

    Article  PubMed  PubMed Central  Google Scholar 

  • Zidar N, Montalvão S, Hodnik Ž, Nawrot DA, Žula A, Ilaš J, Kikelj D, Tammela P, Mašič LP (2014) Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar Drugs 12(2):940–963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Lise Bourguet-Kondracki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

He, F., Mai, L.H., Gardères, J., Hussain, A., Erakovic Haber, V., Bourguet-Kondracki, ML. (2017). Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria. In: Müller, W., Schröder, H., Wang, X. (eds) Blue Biotechnology. Progress in Molecular and Subcellular Biology(), vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-51284-6_2

Download citation

Publish with us

Policies and ethics