Skip to main content

35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters

  • Chapter
  • First Online:
Blue Biotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 55))

Abstract

Currents efforts in marine biodiscovery have essentially focused on temperate to tropical shallow water organisms. With more than 6000 species of marine plants and animals, the Kosterfjord area has the richest marine biodiversity in Swedish waters, but it remains understudied. The overall objective of our marine pharmacognosy research is to explore and reveal the pharmacological potential of organisms from this poorly explored region. More generally, we wish to understand aspects of structure–activity relationships of chemical interactions in cold-water marine environment (shallow and deep). Our strategy is based on ecologically guided search for compounds through studies of physiology and organism interactions coupled to identification of bioactive molecules guided by especially in vivo assays. The research programme originated in the beginning of the 1980s with a broad screening of Swedish marine organisms using both in vitro and in vivo assays, resulting in isolation and identification of several different bioactive molecules. Two congenerous cyclopeptides, i.e. barettin and 8,9-dihydrobarettin, were isolated from the deep-sea sponge Geodia barretti, and structurally elucidated, guided by their antifouling activity and their affinity to a selection of human serotonin receptors. To optimize the activity a number of analogues of barettin were synthezised and tested for antifouling activity. Within the EU project BlueGenics, two larger homologous peptides, barrettides A and B, were isolated from G. baretti. Also, metabolic fingerprinting combined with sponge systematics was used to further study deep-sea natural product diversity in the genus Geodia. Finally, the chemical property space model ‘ChemGPS-NP’ has been developed and used in our research group, enabling a more efficient use of obtained compounds and exploration of possible biological activities and targets. Another approach is the broad application of phylogenetic frameworks, which can be used in prediction of where—in which organisms—to search for novel molecules or better sources of known molecules in marine organisms. In a further perspective, the deeper understanding of evolution and development of life on Earth can also provide answers to why marine organisms produce specific molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2014) Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114(11):5815–5847. doi:10.1021/cr400401e

    Article  CAS  PubMed  Google Scholar 

  • Albert VA, Backlund A, Bremer K (1994a) DNA characters and cladistics: the optimization of functional history. In: Scotland RW, Siebert DJ (eds) Systematics associations (vol 52) (Special Volume 52). Clarendon Press, London, pp 249–272

    Google Scholar 

  • Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC (1994b) Functional constraints and rbcL evidence for land plant phylogeny. Ann Mo Bot Gard 81(3):534–567. doi:10.2307/2399902

  • Amade P, Pesando D, Chevolot L (1982) Antimicrobial activities of marine sponges from French Polynesia and Brittany. Mar Biol 70(3):223–228

    Article  Google Scholar 

  • Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am J Bot 92(10):1737–1748. doi:10.3732/ajb.92.10.1737

    Article  CAS  PubMed  Google Scholar 

  • Andersson L, Bano S, Bohlin L, Riccio R, Minale L (1985) Studies of the Swedish marine organisms. Part 6. A Novel bioactive steroidal glycoside from the starfish Crossaster papposus. J Chem Res (12):366–367

    Google Scholar 

  • Andersson L, Lidgren G, Bohlin L, Magni L, Ogren S, Afzelius L (1983) Studies of Swedish marine organisms. I. Screening of biological activity. Acta Pharm Suec 20(6):401–414

    Google Scholar 

  • Andersson L, Lidgren G, Bohlin L, Pisa P, Wigzell H, Kiessling R (1986) Studies of Swedish marine organisms. V. Screening of biological activity. Acta Pharm Suec 23:91–100

    CAS  PubMed  Google Scholar 

  • Beglinger C (2002) Tegaserod: a novel, selective 5-HT4 receptor partial agonist for irritable bowel syndrome. Int J Clin Pract 56(1):47–51

    CAS  PubMed  Google Scholar 

  • Blumenberg M, Michaelis W (2007) High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Mar Biol 150(6):1153–1160. doi:10.1007/s00227-006-0445-7

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33(3):382–431. doi:10.1039/C5NP00156K

    Article  CAS  PubMed  Google Scholar 

  • Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50. doi:10.1002/(SICI)1098-1128(199601)16:1<3:AID-MED1>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Buonfiglio R, Engkvist O, Várkonyi P, Henz A, Vikeved E, Backlund A, Kogej T (2015) Investigating pharmacological similarity by charting chemical space. J Chem Inf Model 55(11):2375–2390. doi:10.1021/acs.jcim.5b00375

    Article  CAS  PubMed  Google Scholar 

  • Burman R, Gunasekera S, Strömstedt AA, Göransson U (2014) Chemistry and biology of cyclotides: circular plant peptides outside the box. J Nat Prod 77(3):724–736. doi:10.1021/np401055j

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas P (2010) Phylogeny, taxonomy and evolution of the Astrophorida (Porifera, Demospongiae). PhD thesis, available at http://hdl.handle.net/1956/4020, University of Bergen, Bergen

  • Cárdenas P (2016) Who produces ianthelline? The arctic sponge Stryphnus fortis or its sponge epibiont Hexadella dedritifera: a probable case of sponge-sponge contamination. J Chem Ecol 42(4):339–347

    Article  PubMed  Google Scholar 

  • Cárdenas P, Pérez T, Boury-Esnault N (2012) Sponge systematics facing new challenges. Adv Mar Biol 61:79–209

    Article  PubMed  Google Scholar 

  • Cárdenas P, Rapp HT (2013) Disrupted spiculogenesis in deep-water Geodiidae (Porifera, Demospongiae) growing in shallow waters. Invertebr Biol 132(3):173–194

    Article  Google Scholar 

  • Cárdenas P, Rapp HT (2015) Demosponges from the Northern Mid-Atlantic Ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J Mar Biol Assoc UK 95(7):1475–1516. doi:10.1017/S0025315415000983

    Article  Google Scholar 

  • Cárdenas P, Rapp HT, Klitgaard AB, Best M, Thollesson M, Tendal OS (2013) Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool J Linn Soc 169:251–311

    Article  Google Scholar 

  • Cárdenas P, Rapp HT, Schander C, Tendal OS (2010) Molecular taxonomy and phylogeny of the Geodiidae (Porifera, Demospongiae, Astrophorida)—combining phylogenetic and Linnaean classification. Zool Scr 39(1):89–106. doi:10.1111/j.1463-6409.2009.00402.x

    Article  Google Scholar 

  • Cárdenas P, Xavier JR, Reveillaud J, Schander C, Rapp HT (2011) Molecular phylogeny of the Astrophorida (Porifera, Demospongiae) reveals an unexpected high level of spicule homoplasy. PloS ONE 6(4):e18318

    Article  PubMed  PubMed Central  Google Scholar 

  • Carstens BB, Rosengren KJ, Gunasekera S, Schempp S, Bohlin L, Dahlström M, Clark RJ, Göransson U (2015) Isolation, characterization, and synthesis of the barrettides: disulfide-containing peptides from the marine sponge Geodia barretti. J Nat Prod 78(8):1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary C, Saeedi H, Costello MJ (2016) Bimodality of latitudinal gradients in marine species richness. Trends Ecol Evol (in press) doi:10.1016/j.tree.2016.06.001

  • Darwin C (1859) The Origin of Species by means of natural selection or the preservation of favoured races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Durek T, Craik DJ (2015) Therapeutic conotoxins: a US patent literature survey. Expert Opin Ther Pat 25(10):1159–1173. doi:10.1517/13543776.2015.1054095

    Article  CAS  PubMed  Google Scholar 

  • Ebada S, Proksch P (2012) The Chemistry of Marine Sponges. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati O (eds) Handbook of marine natural products. Springer, Netherlands, pp 191–293. doi:10.1007/978-90-481-3834-0_4

  • Einarsdottir E, Liu H-B, Freysdottir J, Gotfredsen CH, Omarsdottir S (2016) Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site. Planta Med 82(09/10):903–909. doi:10.1055/s-0042-105877

    Article  CAS  PubMed  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Sci 334(6059):1091–1097. doi:10.1126/science.1206375

    Article  CAS  Google Scholar 

  • Evans SM, Evans PM, Leksono T (1996) Widespread recovery of dogwhelks, Nucella lapillus (L.), from tributyltin contamination in the North Sea and Clyde Sea. Mar Pollut Bull 32(3):263–269. doi:10.1016/0025-326X(95)00127-9

    Article  CAS  Google Scholar 

  • Friis EM (1990) Silvianthemum suecicum gen. et sp. nov., a new saxifragalean flower from the Late Cretaceous of Sweden. Biologiske skrifter (Kongelige Danske videnskabernes selskab) 36:1–35

    Google Scholar 

  • Gerwick WH, Fenner AM (2013) Drug discovery from marine microbes. Microb Ecol 65(4):800–806. doi:10.1007/s00248-012-0169-9

    Article  CAS  PubMed  Google Scholar 

  • Goloboff PA, Catalano SA, Marcos Mirande J, Szumik CA, Salvador Arias J, Källersjö M, Farris JS (2009) Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics 25(3):211–230. doi:10.1111/j.1096-0031.2009.00255.x

    Article  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie. Band 2., vol 2. Geork Reimer, Berlin

    Google Scholar 

  • Hanssen KØ, Andersen JH, Stiberg T, Engh RA, Svenson J, Genevière A-M, Hansen E (2012) Antitumoral and mechanistic studies of ianthelline isolated from the Arctic sponge Stryphnus fortis. Anticancer Res 32(10):4287–4297

    CAS  PubMed  Google Scholar 

  • Hanssen KØ, Cervin G, Trepos R, Petitbois J, Haug T, Hansen E, Andersen JH, Pavia H, Hellio C, Svenson J (2014) The bromotyrosine derivative ianthelline isolated from the arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling. Mar Biotechnol 16(6):684–694. doi:10.1007/s10126-014-9583-y

    Article  CAS  PubMed  Google Scholar 

  • Hedner E, Sjögren M, Fröndberg P-A, Johansson T, Göransson U, Dahlström M, Jonsson P, Nyberg F, Bohlin L (2006) Brominated Cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J Nat Prod 69(10):1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Hedner E, Sjögren M, Hodzic S, Andersson R, Göransson U, Jonsson PR, Bohlin L (2008) Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J Nat Prod 71(3):330–333

    Article  CAS  PubMed  Google Scholar 

  • Heinrich M, Gibbons S (2001) Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol 53(4):425–432. doi:10.1211/0022357011775712

    Article  CAS  PubMed  Google Scholar 

  • Höller U, König GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62(1):114–118. doi:10.1021/np980341e

    Article  PubMed  Google Scholar 

  • Holzwarth M, Trendel J-M, Albrecht P, Maier A, Michaelis W (2005) Cyclic peroxides derived from the marine sponge Plakortis simplex. J Nat Prod 68(5):759–761. doi:10.1021/np049665v

    Article  CAS  PubMed  Google Scholar 

  • Hougaard L, Christophersen C, Nielsen PH, Klitgaard A, Tendal O (1991) The chemical composition of species of Geodia, Isops and Stryphnus (Choristida: Demospongia: Porifera): a comparative study with some taxonomical implications. Biochem Syst Ecol 19(3):223–235

    Article  CAS  Google Scholar 

  • Johnson A-L, Bergman J, Sjogren M, Bohlin L (2004) Synthesis of barettin. Tetrahedron 60(4):961–965

    Article  CAS  Google Scholar 

  • Karlsson A, Berggren M, Lundin K, Sundin R (2014) Svenska artprojektets marina inventering—slutrapport. ArtDatabanken, SLU, Uppsala

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kingston JF, Benson E, Gregory B, Fallis AG (1979) Sterols from the marine sponges Orina arcoferus and Geodia megastrella. J Nat Prod 42(5):528–531

    Article  CAS  Google Scholar 

  • Klitgaard AB, Tendal OS (2004) Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog Oceanogr 61(1):57–98

    Article  Google Scholar 

  • Köck M, Muñoz J, Cychon C, Timm C, Schmidt G (2013) The Arctic sponge Haliclona viscosa as a source of a wide array of 3-alkyl pyridine alkaloids. Phytochem Rev 12(3):391–406. doi:10.1007/s11101-012-9249-1

    Article  Google Scholar 

  • Kong F, Andersen RJ (1993) Polymastiamide A, a novel steroid/amino acid conjugate isolated from the Norwegian marine sponge Polymastia boletiformis (Lamarck, 1815). J Org Chem 58(24):6924–6927. doi:10.1021/jo00076a073

  • Kong F, Andersen RJ (1996) Polymastiamides B—F, novel steroid/amino acid conjugates isolated from the Norwegian marine sponge Polymastia boletiformis. J Nat Prod 59(4):379–385. doi:10.1021/np960098o

    Article  CAS  Google Scholar 

  • Larsson J, Gottfries J, Muresan S, Backlund A (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70(5):789–794. doi:10.1021/np070002y

    Article  CAS  PubMed  Google Scholar 

  • Leal MC, Hilario A, Munro MHG, Blunt JW, Calado R (2016) Natural products discovery needs improved taxonomic and geographic information. Nat Prod Rep 33(6):747–750. doi:10.1039/c5np00130g

    Article  CAS  PubMed  Google Scholar 

  • Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS ONE 7(1):e30580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kirby J (1963) The X-Men #1. Marvel Comics

    Google Scholar 

  • Li H, Bowling JJ, Fronczek FR, Hong J, Jabba SV, Murray TF, Ha N-C, Hamann MT, Jung JH (2013) Asteropsin A: an unusual cystine-crosslinked peptide from porifera enhances neuronal Ca2 + influx. Biochim Biophys Acta (BBA)—General Subjects 1830(3):2591–2599. doi:10.1016/j.bbagen.2012.11.015

  • Li H, Bowling JJ, Su M, Hong J, Lee B-J, Hamann MT, Jung JH (2014) Asteropsins B-D, sponge-derived knottins with potential utility as a novel scaffold for oral peptide drugs. Biochim Biophys Acta 1840(3):977–984. doi:10.1016/j.bbagen.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Lidgren G, Andersson L, Bohlin L (1985) Studies of Swedish marine organisms. IV. Screening of biological activity. Acta Pharm Suec 22:351–356

    CAS  PubMed  Google Scholar 

  • Lidgren G, Bohlin L, Bergman J (1986) Studies of Swedish marine organisms VII. A novel biologically active indole alkaloid from the sponge Geodia baretti. Tetrahedron Lett 27(28):3283–3284

    Article  CAS  Google Scholar 

  • Lidgren G, Bohlin L, Christophersen C (1988) Studies of Swedish marine organisms, part X. biologically active compounds from the marine sponge Geodia baretti. J Nat Prod 51(6):1277–1280

    Article  CAS  Google Scholar 

  • Lind K, Hansen E, Østerud B, Eilertsen K-E, Bayer A, Engqvist M, Leszczak K, Jørgensen T, Andersen J (2013) Antioxidant and anti-inflammatory activities of barettin. Mar Drugs 11(7):2655–2666

    Article  PubMed  PubMed Central  Google Scholar 

  • Lind KF, Østerud B, Hansen E, Jørgensen TØ, Andersen JH (2015) The immunomodulatory effects of barettin and involvement of the kinases CAMK1α and RIPK2. Immunopharmacol Immunotoxicol 37(5):458–464. doi:10.3109/08923973.2015.1082584

    Article  PubMed  Google Scholar 

  • Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nat 432(7019):855–861. doi:10.1038/nature03193

    Article  CAS  Google Scholar 

  • Lippert H, Brinkmeyer R, Mülhaupt T, Iken K (2003) Antimicrobial activity in sub-Arctic marine invertebrates. Polar Biol 26(9):591–600. doi:10.1007/s00300-003-0525-9

    Article  Google Scholar 

  • Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8(1):69–85

    Article  CAS  PubMed  Google Scholar 

  • Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3(12):1475–1489. doi:10.4155/fmc.11.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zool 12(7):1–27. doi:10.1186/s12983-015-0099-8

    Google Scholar 

  • Muigg P, Rosén J, Bohlin L, Backlund A (2013) In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochem Rev 12(3):449–457. doi:10.1007/s11101-012-9256-2

    Article  CAS  Google Scholar 

  • Murillo FJ, Muñoz PD, Cristobo J, Ríos P, González C, Kenchington E, Serrano A (2012) Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species composition. Mar Biol Res 8(9):842–854

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2016) Drugs and drug candidates from marine sources: an assessment of the current “State of Play”. Planta Med 82(09/10):775–789. doi:10.1055/s-0042-101353

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe BR (2001) Biologically active proteins from natural product extracts. J Nat Prod 64(10):1373–1381. doi:10.1021/np0103362

    Article  PubMed  Google Scholar 

  • Olsen EK, Hansen E, Moodie LW, Isaksson J, Sepčić K, Cergolj M, Svenson J, Andersen JH (2016a) Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org Biomol Chem 14:1629–1640. doi:10.1039/C5OB02416A

  • Olsen EK, Søderholm KL, Isaksson J, Andersen JH, Hansen E (2016b) Metabolomic profiling reveals the N-Acyl-Taurine Geodiataurine in extracts from the marine sponge Geodia macandrewii (Bowerbank). J Nat Prod 79(5):1285–1291. doi:10.1021/acs.jnatprod.5b00966

    Article  CAS  PubMed  Google Scholar 

  • Oprea TI, Gottfries J (2001) Chemography: the art of navigating in chemical space. J Comb Chem 3(2):157–166. doi:10.1021/cc0000388

    Article  CAS  PubMed  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag Ser 6 2(11):559–572. doi:10.1080/14786440109462720

  • Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, Schleper C (2012) Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol 14(5):1308–1324

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen T, Jensen J, Anthoni U, Christophersen C, Nielsen PH (1993) Structure and synthesis of bromoindoles from the marine sponge Pseudosuberites hyalinus. J Nat Prod 56(9):1553–1558. doi:10.1021/np50099a014

    Article  CAS  Google Scholar 

  • Sjöblom T, Bohlin L, Christophersen C (1983) Studies of Swedish marine organisms. II. Muscle-relaxant alkaloids from the marine bryozoan Flustra foliacea. Acta pharma Suec 20(6):415–418

    Google Scholar 

  • Sjögren M, Dahlström M, Göransson U, Jonsson PR, Bohlin L (2004a) Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barretti. Biofouling 20(6):291–297

    Article  PubMed  Google Scholar 

  • Sjögren M, Goransson U, Johnson AL, Dahlstrom M, Andersson R, Bergman J, Jonsson PR, Bohlin L (2004b) Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J Nat Prod 67(3):368–372

    Article  PubMed  Google Scholar 

  • Sjögren M, Johnson A-L, Hedner E, Dahlström M, Göransson U, Shirani H, Bergman J, Jonsson PR, Bohlin L (2006) Antifouling activity of synthesized peptide analogs of the sponge metabolite barettin. Peptides 27(9):2058–2064. doi:10.1016/j.peptides.2006.03.027

    Article  PubMed  Google Scholar 

  • Sjögren M, Jonsson PR, Dahlström M, Lundälv T, Burman R, Göransson U, Bohlin L (2011) Two brominated cyclic dipeptides released by the coldwater marine sponge Geodia barretti act in synergy as chemical defense. J Nat Prod 74(3):449–454

    Article  PubMed  Google Scholar 

  • Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25(6):1131–1166. doi:10.1039/b808743a

    Article  CAS  PubMed  Google Scholar 

  • Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31(8):999–1025. doi:10.1039/C3NP70118B

    Article  CAS  PubMed  Google Scholar 

  • Sölter S, Dieckmann R, Blumenberg M, Francke W (2002) Barettin, revisited? Tetrahedron Lett 43(18):3385–3386

    Article  Google Scholar 

  • Strese Å, Backlund A, Alsmark C (2014) A recently transferred cluster of bacterial genes in Trichomonas vaginalis—lateral gene transfer and the fate of acquired genes. BMC Evol Biol 14(1):1–13. doi:10.1186/1471-2148-14-119

    Article  Google Scholar 

  • Su M, Li H, Wang H, Kim EL, Kim HS, Kim E-H, Lee J, Jung JH (2016) Stable and biocompatible cystine knot peptides from the marine sponge Asteropus sp. Bioorg Med Chem 24(13):2979–2987. doi:10.1016/j.bmc.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  • Tadesse M, Gulliksen B, Strøm MB, Styrvold OB, Haug T (2008) Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. J Invertebr Pathol 99(3):286–293. doi:10.1016/j.jip.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Hamada T, Hirota H, Nakao Y, Matsunaga S, van Soest RWM, Fusetani N (2006) Asteropine a, a sialidase-inhibiting conotoxin-like peptide from the marine sponge Asteropus simplex. Chem Biol 13(6):569–574. doi:10.1016/j.chembiol.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  • Théel H (1908) Om utvecklingen af Sveriges zoologiska hafsstation Kristineberg och om djurlifvet i angränsande haf och fjordar. Arkiv För Zoologi 4(5):1–136

    Google Scholar 

  • Thiel V, Blumenberg M, Hefter J, Pape T, Pomponi S, Reed J, Reitner J, Wörheide G, Michaelis W (2002) A chemical view of the most ancient metazoa—biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89(2):60–66

    Article  CAS  PubMed  Google Scholar 

  • Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M (2016) From mollusks to medicine: a venomics approach for the discovery and characterization of therapeutics from Terebridae peptide toxins. Toxins 8(4). doi:10.3390/toxins8040117ARTN 117

  • Vikeved E, Backlund A, Alsmark C (2016) The dynamics of lateral gene transfer in genus Leishmania—a route for adaptation and species diversification. PLoS Negl Trop Dis 10(1):e0004326. doi:10.1371/journal.pntd.0004326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58(1–2):175–189. doi:10.3354/meps058175

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for all the work that graduate students and postdocs have performed during the years, together with scientific colleagues. Especially, the late Director of Tjärnö Marine Biological Laboratory, Lars Afzelius (1936–2001), should be remembered for great help in introducing this research programme. Also Martin Sjögren and Mia Dahlström should be acknowledged for the development of the antifouling research. The Swedish Research Councils, Carl Tryggers Stiftelse and the EU project BlueGenics (grant agreement No. 311848) should be acknowledged for financial support. PC acknowledges funding by the EU Horizon 2020 programme SponGES under grant agreement No. 679849.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars Bohlin or Ulf Göransson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bohlin, L., Cárdenas, P., Backlund, A., Göransson, U. (2017). 35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters. In: Müller, W., Schröder, H., Wang, X. (eds) Blue Biotechnology. Progress in Molecular and Subcellular Biology(), vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-51284-6_1

Download citation

Publish with us

Policies and ethics