Skip to main content

Development of the Uterine Cervix and Its Implications for the Pathogenesis of Cervical Cancer

  • Chapter
  • First Online:
Pathology of the Cervix

Abstract

Normal development of the uterine cervix has been widely studied and the origin of both the columnar and squamous epithelia, as well as the molecular basis of their differentiation, has been established. The process of early carcinogenesis in the uterine cervix has also been described extensively, in particular with respect to the role of human papillomavirus (HPV) infection. However, questions remain about the progenitor cell(s) that play(s) a role in normal (embryonic and fetal) development, as well as in the oncogenic processes that take place in the transformation zone of the uterine cervix. This chapter describes the development of the human lower female reproductive tract, in particular the cervical squamocolumnar junction, and its implications for the pathogenesis of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martens JE, et al. Reserve cells in human uterine cervical epithelium are derived from mullerian epithelium at midgestational age. Int J Gynecol Pathol. 2007;26:463–8.

    Article  PubMed  Google Scholar 

  2. Ince TA, et al. p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol. 2002;161:1111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurita T. Developmental origin of vaginal epithelium. Differentiation. 2010;80:99–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herfs M, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A. 2012;109:10516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reich O, Fritsch H. The developmental origin of cervical and vaginal epithelium and their clinical consequences: a systematic review. J Low Genit Tract Dis. 2014;18:358–60.

    Article  PubMed  Google Scholar 

  6. Doorbar J, et al. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015;25:2–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woodman CB, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7:11–22.

    Article  CAS  PubMed  Google Scholar 

  8. Schiffman M, et al. Human papillomavirus and cervical cancer. Lancet. 2007;370:890–907.

    Article  CAS  PubMed  Google Scholar 

  9. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Google Scholar 

  11. Wright TC, Kurman RJ, Ferenczy A. Precancerous lesions of the cervix. In: Blaustein A, Kurman RJ, editors. Blaustein’s pathology of the female genital tract. 5th ed. New York: Springer; 2002.

    Google Scholar 

  12. Jacobson DL, et al. Cervical ectopy and the transformation zone measured by computerized planimetry in adolescents. Int J Gynaecol Obstet. 1999;66:7–17.

    Article  CAS  PubMed  Google Scholar 

  13. Burghardt E, Ostor AG. Site and origin of squamous cervical cancer: a histomorphologic study. Obstet Gynecol. 1983;62:117–27.

    CAS  PubMed  Google Scholar 

  14. Martens JE, et al. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res. 2004;24:771–5.

    PubMed  Google Scholar 

  15. Mirkovic J, et al. Carcinogenic HPV infection in the cervical squamo-columnar junction. J Pathol. 2015;236:265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klattig J, Englert C. The Mullerian duct: recent insights into its development and regression. Sex Dev. 2007;1:271–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Ferrer ML, et al. Experimental contributions to the study of the embryology of the vagina. Hum Reprod. 2006;21:1623–8.

    Article  CAS  PubMed  Google Scholar 

  18. Cai Y. Revisiting old vaginal topics: conversion of the Mullerian vagina and origin of the “sinus” vagina. Int J Dev Biol. 2009;53:925–34.

    Article  CAS  PubMed  Google Scholar 

  19. Drews U. Helper function of the Wolffian ducts and role of androgens in the development of the vagina. Sex Dev. 2007;1:100–10.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4:969–80.

    Article  CAS  PubMed  Google Scholar 

  21. Fritsch H, Richter E, Adam N. Molecular characteristics and alterations during early development of the human vagina. J Anat. 2012;220:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fritsch H, et al. Development of epithelial and mesenchymal regionalization of the human fetal utero-vaginal anlagen. J Anat. 2013;222:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kurita T, Mills AA, Cunha GR. Roles of p63 in the diethylstilbestrol-induced cervicovaginal adenosis. Development. 2004;131:1639–49.

    Article  CAS  PubMed  Google Scholar 

  24. Kurita T, et al. Differential expression of p63 isoforms in female reproductive organs. Mech Dev. 2005;122:1043–55.

    Article  CAS  PubMed  Google Scholar 

  25. Laronda MM, et al. The development of cervical and vaginal adenosis as a result of diethylstilbestrol exposure in utero. Differentiation. 2012;84:252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smedts F, et al. Detection of keratin subtypes in routinely processed cervical tissue: implications for tumour classification and the study of cervix cancer aetiology. Virchows Arch. 1994;425:145–55.

    Article  CAS  PubMed  Google Scholar 

  27. Smedts F, et al. Keratin expression in cervical-cancer. Am J Pathol. 1992;141:497–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smedts F, et al. Basal-cell keratins in cervical reserve cells and a comparison to their expression in cervical intraepithelial neoplasia. Am J Pathol. 1992;140:601–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smedts F, Ramaekers FC, Vooijs PG. The dynamics of keratin expression in malignant transformation of cervical epithelium: a review. Obstet Gynecol. 1993;82:465.

    CAS  PubMed  Google Scholar 

  30. van Dorst EB, et al. The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells. J Clin Pathol. 1998;51:679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. van der Heijden M, et al. Bcl-2 is a critical mediator of intestinal transformation. Nat Commun. 2016;7:10916.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol. 2012;354:34–53.

    Article  CAS  PubMed  Google Scholar 

  33. Elson DA, et al. Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res. 2000;60:1267–75.

    CAS  PubMed  Google Scholar 

  34. Martens JE, et al. Distribution pattern and marker profile show two subpopulations of reserve cells in the endocervical canal. Int J Gynecol Pathol. 2009;28:381–8.

    Article  PubMed  Google Scholar 

  35. Witkiewicz AK, et al. Microglandular hyperplasia: a model for the de novo emergence and evolution of endocervical reserve cells. Hum Pathol. 2005;36:154–61.

    Article  PubMed  Google Scholar 

  36. Stegner HE, Pape C. Ultramicoscopy studies on the dysplastic epithelium of the cervix and on carcinoma in situ. Fortschr Med. 1973;91:603–6.

    CAS  PubMed  Google Scholar 

  37. Ter Harmsel B, et al. BCL-2 immunoreactivity increases with severity of CIN: a study of normal cervical epithelia, CIN, and cervical carcinoma. J Pathol. 1996;179:26–30.

    Article  CAS  PubMed  Google Scholar 

  38. Hoogduin KJ, et al. BCL2 and keratin 5 define the uterine-cervix-isthmus junction, a transition between endocervical and tubal-like epithelium. Int J Gynecol Pathol. 2013;32:122–30.

    Article  CAS  PubMed  Google Scholar 

  39. Hiersche HD, Nagl W. Regeneration of secretory epithelium in the human endocervix. Arch Gynecol. 1980;229:83–90.

    Article  CAS  PubMed  Google Scholar 

  40. Herfs M, et al. A novel blueprint for ‘top down’ differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. J Pathol. 2013;229:460–8.

    Article  PubMed  Google Scholar 

  41. Tamussino K, Girardi F, Reich O. Burghardt’s colposcopy and cervical pathology. 4th ed. New York: Thieme; 2015.

    Google Scholar 

  42. McNairn AJ, Guasch G. Epithelial transition zones: merging microenvironments, niches, and cellular transformation. Eur J Dermatol. 2011;21:21–8.

    CAS  PubMed  Google Scholar 

  43. Mukonoweshuro P, Oriowolo A, Smith M. Audit of the histological definition of cervical transformation zone. J Clin Pathol. 2005;58:671.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferenczy A, Wright T. Anatomy and histology of the cervix. In: Kurman R, editor. Blaustein’s pathology of the female genital tract. New York: Springer; 1994. p. 185–201.

    Chapter  Google Scholar 

  45. Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation? Trends Mol Med. 2009;15:245–53.

    Article  CAS  PubMed  Google Scholar 

  46. Herfs M, et al. Mucosal junctions: open doors to HPV and HIV infections? Trends Microbiol. 2011;19:114–20.

    Article  CAS  PubMed  Google Scholar 

  47. Hwang LY, et al. Active squamous metaplasia of the cervical epithelium is associated with subsequent acquisition of human papillomavirus 16 infection among healthy young women. J Infect Dis. 2012;206:504–11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ferenczy A, Wright T. Anatomy and histology of the cervix. In: Kurman R, editor. Blaustein’s pathology of the female genital tract. New York: Springer; 2002. p. 207–25.

    Google Scholar 

  49. Regauer S, Reich O. CK17 and p16 expression patterns distinguish (atypical) immature squamous metaplasia from high-grade cervical intraepithelial neoplasia (CIN III). Histopathology. 2007;50:629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsutsumi K, et al. In vitro and in vivo analysis of cellular origin of cervical squamous metaplasia. Am J Pathol. 1993;143:1150–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyatake T, et al. Clonality analysis and human papillomavirus infection in squamous metaplasia and atypical immature metaplasia of uterine cervix: is atypical immature metaplasia a precursor to cervical intraepithelial neoplasia 3? Int J Gynecol Pathol. 2007;26:180–7.

    Article  PubMed  Google Scholar 

  52. Ueda Y, et al. Monoclonal expansion with integration of high-risk type human papillomaviruses is an initial step for cervical carcinogenesis: association of clonal status and human papillomavirus infection with clinical outcome in cervical intraepithelial neoplasia. Lab Investig. 2003;83:1517–27.

    Article  PubMed  Google Scholar 

  53. van der Marel J, et al. Oncogenic human papillomavirus-infected immature metaplastic cells and cervical neoplasia. Am J Surg Pathol. 2014;38:470–9.

    Article  PubMed  Google Scholar 

  54. Keating JT, et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol. 2001;25:884–91.

    Article  CAS  PubMed  Google Scholar 

  55. Roberts JN, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med. 2007;13:857–61.

    Article  CAS  PubMed  Google Scholar 

  56. Lopez J, et al. Human papillomavirus infections and cancer stem cells of tumors from the uterine cervix. Open Virol J. 2012;6:232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Witkiewicz A, et al. Superficial (early) endocervical adenocarcinoma in situ: a study of 12 cases and comparison to conventional AIS. Am J Surg Pathol. 2005;29:1609–14.

    Article  PubMed  Google Scholar 

  58. Herfs M, Crum CP. Cervical cancer: squamocolumnar junction ablation--tying up loose ends? Nat Rev Clin Oncol. 2015;12:378–80.

    Article  PubMed  Google Scholar 

  59. Herfs M, et al. Unique recurrence patterns of cervical intraepithelial neoplasia after excision of the squamocolumnar junction. Int J Cancer. 2015;136:1043–52.

    Article  CAS  PubMed  Google Scholar 

  60. Selvi K, et al. Role of p16, CK17, p63, and human papillomavirus in diagnosis of cervical intraepithelial neoplasia and distinction from its mimics. Int J Surg Pathol. 2014;22:221–30.

    Article  PubMed  Google Scholar 

  61. Smedts F, Ramaekers FC, Hopman AH. The two faces of cervical adenocarcinoma in situ. Int J Gynecol Pathol. 2010;29:378–85.

    Article  PubMed  Google Scholar 

  62. Ponten J, Guo Z. Precancer of the human cervix. Cancer Surv. 1998;32:201–29.

    CAS  PubMed  Google Scholar 

  63. Quint W, et al. One virus, one lesion – individual components of CIN lesions contain a specific HPV type. J Pathol. 2012;227:62–71.

    Article  CAS  PubMed  Google Scholar 

  64. Litjens RJ, et al. The majority of metachronous CIN1 and CIN3 lesions are caused by different human papillomavirus genotypes, indicating that the presence of CIN1 seems not to determine the risk for subsequent detection of CIN3. Hum Pathol. 2014;45:221–6.

    Article  CAS  PubMed  Google Scholar 

  65. Herfs M, et al. Cervical squamocolumnar junction-specific markers define distinct, clinically relevant subsets of low-grade squamous intraepithelial lesions. Am J Surg Pathol. 2013;37:1311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guo M, et al. Evaluation of a commercialized in situ hybridization assay for detecting human papillomavirus DNA in tissue specimens from patients with cervical intraepithelial neoplasia and cervical carcinoma. J Clin Microbiol. 2008;46:274–80.

    Article  CAS  PubMed  Google Scholar 

  67. Hopman AH, et al. HPV in situ hybridization: impact of different protocols on the detection of integrated HPV. Int J Cancer. 2005;115:419–28.

    Article  CAS  PubMed  Google Scholar 

  68. Evans MF, et al. Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod Pathol. 2002;15:1339–47.

    Article  PubMed  Google Scholar 

  69. Paquette C, Mills AM, Stoler MH. Predictive value of cytokeratin 7 immunohistochemistry in cervical low-grade squamous intraepithelial lesion as a marker for risk of progression to a high-grade lesion. Am J Surg Pathol. 2016;40:236–43.

    PubMed  Google Scholar 

  70. Escobar-Hoyos LF, et al. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod Pathol. 2014;27:621–30.

    Article  CAS  PubMed  Google Scholar 

  71. Smedts F, Ramaekers FC, Hopman AH. CK17 and p16 expression patterns distinguish (atypical) immature squamous metaplasia from high-grade cervical intraepithelial neoplasia. Histopathology. 2008;52:515–6.

    Article  CAS  PubMed  Google Scholar 

  72. Zaino RJ. Glandular lesions of the uterine cervix. Mod Pathol. 2000;13:261–74.

    Article  CAS  PubMed  Google Scholar 

  73. Bekkers RL, et al. Coexisting high-grade glandular and squamous cervical lesions and human papillomavirus infections. Br J Cancer. 2003;89:886–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Theelen W, et al. Human papillomavirus multiplex ligation-dependent probe amplification assay for the assessment of viral load, integration, and gain of telomerase-related genes in cervical malignancies. Hum Pathol. 2013;44:2410–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Douwe Remerij and Kjeld Bolland for performing the immunohistochemical staining of SIL and AIS lesions, Monique Ummelen for the fluorescence in situ hybridization, and Dr. J Cleutjens for the assistance with scanning of microscope slides enabling comparative immunohistochemical evaluation of histological areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton H. N. Hopman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hopman, A.H.N., Ramaekers, F.C.S. (2017). Development of the Uterine Cervix and Its Implications for the Pathogenesis of Cervical Cancer. In: Herrington, C. (eds) Pathology of the Cervix. Essentials of Diagnostic Gynecological Pathology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-51257-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51257-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51255-6

  • Online ISBN: 978-3-319-51257-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics