Skip to main content

Reducing Variability in Anatomical Definitions Over Time Using Longitudinal Diffeomorphic Mapping

  • Conference paper
  • First Online:
Book cover Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10126))

Abstract

We address the challenge of variability in the definition of anatomical structures over time in a single subject, using a template-based diffeomorphic mapping algorithm to filter out inconsistencies. Shape changes are parametrized through 2D surfaces, while data attachment is specified through dense 3D images. The mapping uses two geodesic trajectories through diffeomorphism space: template to baseline, and baseline through the timeseries. We apply this algorithm to a study of atrophy in the entorhinal and surrounding cortex in patients with mild cognitive impairment, characterized by rate of change of log-volume. We compare the uncertainty in atrophy rate measured from manual segmentations, to that computed with segmentations filtered using our longitudinal method, and to that computed from FreeSurfer. Our method correlates well with manual (correlation coefficient 0.9881, and results in significantly less variability than manual (p 8.86e-05) and FreeSurfer (p 1.03e-04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.org.

References

  1. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, S.W., Dey, T.K., Shewchuk, J.: Delaunay Mesh Generation. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  3. Ding, S.L., Van Hoesen, G.W.: Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum. Brain Mapp. 31(9), 1359–1379 (2010)

    Article  Google Scholar 

  4. Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013). http://dx.doi.org/10.1007/s11263-012-0556-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Gómez-Isla, T., Price, J.L., McKeel Jr., D.W., Morris, J.C., Growdon, J.H., Hyman, B.T.: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16(14), 4491–4500 (1996)

    Google Scholar 

  8. Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., Laakso, M.P., Pitkänen, A.: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am. J. Neuroradiol. 19(4), 659–671 (1998)

    Google Scholar 

  9. Miller, M.I., Younes, L., Trouve, A.: Diffeomorphometry and geodesic positioning systems for human anatomy. Technol. (Singap. World Sci.) 2, 36 (2014). http://dx.doi.org/10.1142/S2339547814500010

    Google Scholar 

  10. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  11. Miller, M.I., Trouvé, A., Younes, L.: Hamiltonian systems and optimal control in computational anatomy: 100 years since D’arcy Thompson. Annu. Rev. Biomed. Eng. 17, 447–509 (2015)

    Article  Google Scholar 

  12. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)

    Article  Google Scholar 

  13. Qiu, A., Younes, L., Miller, M.: Principal component based diffeomorphic surface mapping. IEEE Trans. Med. Imaging 31(2), 302–311 (2012)

    Article  Google Scholar 

  14. Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B.: Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61(4), 1402–1418 (2012)

    Article  Google Scholar 

  15. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vis. 117(1), 70–92 (2016)

    Article  MathSciNet  Google Scholar 

  16. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G.D., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5), 62–74 (2014)

    Article  Google Scholar 

  17. Tward, D.J., Bakker, A., Gallagher, M., Miller, M.I.: Changes in medial temporal lobe anatomy quantified using probabilistic atlas construction and surface diffeomorphometry. In: Alzheimer’s Association International Conference 2015 (2015)

    Google Scholar 

  18. Tward, D.J., Sicat, C.C., Brown, T., Miller, E.A., Ratnanather, J.T., Younes, L., Bakker, A., Albert, M., Gallagher, M., Mori, S., Miller, M.I.: Local atrophy of entorhinal and trans-entorhinal cortex in mild cognitive impairment measured via diffeomorphometry. In: Society for Neuroscience 2016 meeting. Abstract Control Number 8556, November 2016

    Google Scholar 

  19. Tward, D., Jovicich, J., Soricelli, A., Frisoni, G., Trouvé, A., Younes, L., Miller, M.: Improved reproducibility of neuroanatomical definitions through diffeomorphometry and complexity reduction. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 223–230. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10581-9_28

    Google Scholar 

  20. Tward, D., Miller, M., Trouve, A., Younes, L.: Parametric surface diffeomorphometry for low dimensional embeddings of dense segmentations and imagery. IEEE Trans. Pattern Anal. Mach. Intell. (2016). doi:10.1109/TPAMI.2016.2578317

    Google Scholar 

  21. Tward, D.J., Ma, J., Miller, M.I., Younes, L.: Robust diffeomorphic mapping via geodesically controlled active shapes. Int. J. Biomed. Imaging 2013, 19 p. (2013). Article No. 3

    Google Scholar 

  22. Varon, D., Loewenstein, D.A., Potter, E., Greig, M.T., Agron, J., Shen, Q., Zhao, W., Celeste Ramirez, M., Santos, I., Barker, W.: Minimal atrophy of the entorhinal cortex and hippocampus: progression of cognitive impairment. Dement. Geriatr. Cogn. Disord. 31(4), 276–283 (2011)

    Article  Google Scholar 

  23. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  24. Younes, L., Albert, M., Miller, M.I.: The BIOCARD research team: inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease. NeuroImage Clin. 5, 178–187 (2014). http://dx.doi.org/10.1016/j.nicl.2014.04.009

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Center for Research Resources and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through Grant Number P41 EB015909. This work was supported by the Kavli Foundation. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [16], which is supported by National Science Foundation grant number ACI-1053575.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Tward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tward, D.J., Sicat, C.S., Brown, T., Bakker, A., Miller, M.I. (2016). Reducing Variability in Anatomical Definitions Over Time Using Longitudinal Diffeomorphic Mapping. In: Reuter, M., Wachinger, C., Lombaert, H. (eds) Spectral and Shape Analysis in Medical Imaging. SeSAMI 2016. Lecture Notes in Computer Science(), vol 10126. Springer, Cham. https://doi.org/10.1007/978-3-319-51237-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51237-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51236-5

  • Online ISBN: 978-3-319-51237-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics