Skip to main content

Cell-Derived Microparticles/Exosomes in Neuroinflammation

  • Chapter
  • First Online:

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The roles of cell-derived microparticles (MP) in neuroinflammatory disorders are increasingly recognized as fundamental. Exosomes are now established as a well-defined subclass of MP. A major function is transport of many inflammatory mediators, now including gene-modulating RNA transcripts. Topics covered include traumatic brain injury, stroke, vascular dementia, infectious viral diseases, and the neurodegenerative/protein-misfolding diseases (ALS, MS, PD, etc.). It concludes with review of MP-based therapeutic strategies, including use of MP as vectors of gene therapy (via siRNA) and for drug delivery across the blood-brain barrier. Results to date are highly promising. It is expected that in the near future, this field will lead to improved understanding of neuroinflammatory conditions as well as more effective treatments for those condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

MS:

Multiple sclerosis

PD:

Parkinson’s disease

TBI:

Traumatic brain injury

References

  1. McGeer PL, McGeer EG. History of innate immunity in neurodegenerative disorders. Front Pharmacol. 2011;2 (Dec., Art. #77):1–5.

    Google Scholar 

  2. Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.

    Article  CAS  PubMed  Google Scholar 

  3. Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross priming. Nat Med. 2001;7(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  4. Tsilioni I, Panagiotidou S, Theoharides TC. Exosomes in neurologic and psychiatric disorders. Clin Ther. 2014;36(6):882–8.

    Article  CAS  PubMed  Google Scholar 

  5. Lobb RJ, Becker M, En SW, et al. Optimized exosome isolation protocol for cell culture supernatants and human plasma. J Extracell Vesicles. 2015;17(4):27031.

    Article  Google Scholar 

  6. Salzer U, Zhu R, Luten M, et al. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion. 2008;48:451–62.

    Article  CAS  PubMed  Google Scholar 

  7. Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009;113(5):1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allan D, Thomas P, Limbrick AR. The isolation and characterization of 60 nm vesicles (“nanovesicles”) produced during ionophore A23187-induced budding of human erythrocytes. Biochem J. 1980;188:881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Danesh A, Inglis HC, Jackman RP, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu X, Greening DW, Rai A, et al. Highly-purified exosomes and shed microvesicles isolated from human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods Inf Med. 2015;87:11–25.

    CAS  Google Scholar 

  11. Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Nat Acad Sci USA. 2015;112(12):E1433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes [Review]. Proteomics. 2013;13(10–11):1554–71.

    Article  CAS  PubMed  Google Scholar 

  13. Sadallah S, Eken C, Schifferli JA. Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol. 2008;84(5):1316–25.

    Article  CAS  PubMed  Google Scholar 

  14. Valapala M, Vishwanatha J. Lipid raft endocytosis and exosomal transport facilitate extracellula trafficking of annexin A2. J Biol Chem. 2011;286(35):30911–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamashita T, Takahashi Y, Nishikiwa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from circulation. Eur J Pharm Biopharm. 2016;98(Jan):1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Yao Y, Wu J, et al. Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol. 2015;8(6):6135–42.

    PubMed  PubMed Central  Google Scholar 

  17. Zarovni N, Corrado A, Gluzzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acid using immunocapture approaches. Methods Inf Med. 2015;87:46–58.

    CAS  Google Scholar 

  18. VanDerMeijden PE, VanSchilfgaard M, VanOerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via FXIIa. J Thromb Haemost. 2012;10:1355–62.

    Article  CAS  Google Scholar 

  19. Rubin O, Delobel J, Prudent M, et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion. 2013;53(8):1744–55.

    Article  CAS  PubMed  Google Scholar 

  20. Soriano AO, Jy W, Chirinos JA, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540–6.

    Article  PubMed  Google Scholar 

  21. Horstman LL, Minagar A, Jy W, et al. Cell-derived microparticles and exosomes in neuroinflammatory conditions. Int Rev Neurobiol. 2007;79:229–68.

    Google Scholar 

  22. Johnson BL, Goetzman HS, Prakash PS, et al. Mechanisms underlying mouse TNF-alpha stimulated neutrophil derived microparticle generation. Biochem Biophyis Res Commun. 2013;437(4):591–6.

    Article  CAS  Google Scholar 

  23. Koseoglu S, Dilks JR, Peters CG, et al. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis. Arterioscl Thromb Vasc Biol. 2013;33(3):481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Connell DJ, Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate regulates activation-induced platelet microparticle formation. Biochem. 2005;44:6361–70.

    Article  CAS  Google Scholar 

  25. Fujii T, Sakata A, Nishinura S, et al. TMEM16F is required for phosphatidylserine and microparticle release in activated mouse platelets. Proc Nat Acad Sci USA. 2015;112(41):12800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brooks MB, Catalfamo JL, MacNguyen R, et al. A TMEM16F point mutation causes an absence of canine platelet TMEM16F and inefficient activation and death-induced phospholipid scrambling. J Thromb Haemost. 2015;13:2240–52. PRE-PUB(tba):tba

    Article  CAS  PubMed  Google Scholar 

  27. Jy W, Horstman LL, Arce M, et al. Clinical significance of platelet microparticles in autoimmune thrombocytopenias [with Editorial pg 321]. J Lab Clin Med. 1992;119:334–45.

    CAS  PubMed  Google Scholar 

  28. Ahn YS, Horstman LL, Jy W, et al. Vascular dementia in patients with immune thrombocytopenic purpura (ITP). Thromb Res. 2002;107:337–44.

    Article  CAS  PubMed  Google Scholar 

  29. Sewify EM, Sayed D, Abdel ARF, et al. Increased circulating red cell microparticles (RMP) and platelet microparticles (PMP) in immune thrombocytopenic purpura. Thromb Res. 2013;131(2):e59–63.

    Article  CAS  PubMed  Google Scholar 

  30. Lee YJ, Horstman LL, Janania J, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993;72:295–304.

    Article  CAS  PubMed  Google Scholar 

  31. Lavallee PC, Labreuche J, Faille D, et al. Circulating markers of endothelial dysfunction and platelet activation in patients with severe symptomatic cerebral small vessel disease. Cerebrovasc Dis. 2013;36(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  32. Datta A, Chen CP, Sze SK. Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microparticles enriched plasma. PloS One. 2014;9(4):e94663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jy W, Horstman LL, Homolak D, et al. Electrophoretic properties of platelets from normal, thrombotic and ITP patients by doppler electrophoretic light scattering analysis. Platelets. 1995;6:354–8.

    Article  CAS  PubMed  Google Scholar 

  34. London F, Walsh PN. The role of electrostatic interaction in the assembly of the factor X activating complex on both activated platelets and negatively-charged phospholipid vesicles. Biochemistry. 1996;35(37):12146–54.

    Article  CAS  PubMed  Google Scholar 

  35. VanDijk D, Jansen EWL, Hijman R, et al. Cognitive outcomes after off-pump and on-pump coronary artery bypass graft surgery. JAMA. 2002;287(11):1405–12.

    Article  Google Scholar 

  36. Humphries S, Harrison MJ. Cognitive change 5 years after coronary artery bypass surgery. Health Psychol. 2003;22(6):579–86.

    Article  PubMed  Google Scholar 

  37. Minagar A, Jy W, Jimenez JJ, et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001;56(10):1319–24.

    Article  CAS  PubMed  Google Scholar 

  38. Jimenez JJ, Jy W, Mauro L, et al. Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes. Multiple Sclerosis. 2005;11(3):310–5.

    Article  CAS  PubMed  Google Scholar 

  39. Jy W, Jimenez JJ, Minagar A, et al. Endothelial microparticles (EMP) enhance adhesion and transmigration of monocytes: EMP-monocyte conjugates as a marker of disease activity in multiple sclerosis (MS). Blood. 2002;100(11):460a Ab 1783.

    Google Scholar 

  40. Jy W, Minagar A, Jimenez JJ, et al. Endothelial microparticles (EMP) bind and activate monocytes: Elevated EMP-monocyte complexes in multiple sclerosis. Frontiers Biosci. 2004;9:3137–44.

    Article  CAS  Google Scholar 

  41. Sheremata WA, Jy W, Delgado S, et al. Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31+ EMP) in multiple sclerosis. J Neuroinflammation. 2006;3:23–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235–49.

    Article  CAS  PubMed  Google Scholar 

  43. Bidot CJ, Horstman LL, Jy W, et al. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis. JCM Neurol. 2007;7:36.

    Google Scholar 

  44. Sheremata WA, Jy W, Horstman LL, et al. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008;5:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sevush S, Jy W, Horstman LL, et al. Platelet activation in Alzheimer’s disease. Arch Neurol. 1998;55(4):530–6.

    Article  CAS  PubMed  Google Scholar 

  46. Pareek S, Roy S, Kumari B, et al. MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune response. J Neuroinflammation. 2014;11:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hill JM, Zhang Y, Clement C, et al. HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport. 2009;20(16):1500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen B, Combes V, Bonhoure A, et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory response. PloS One. 2014;9(3):e91597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Frohlich D, Kuo WP, Fruhbeis C. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Article  CAS  Google Scholar 

  50. Pusic AD. Youth and environmental enrichment generate serum exosomes containing miR-219 that promotes CNS myelination. Glia. 2014;62(2):284–99.

    Article  PubMed  Google Scholar 

  51. Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Atheroscler Thromb Vasc Biol. 2014;34(8):1731–8.

    Article  CAS  Google Scholar 

  52. Giovannelli I, Martelli F, Repice A, et al. Detection of JCPyV micro RNA in blood and urine samples of multiple sclerosis patients undergoing natalizumab therapy. J Neurovirol. 2015;21:666–70. EPUB PREPRINT

    Article  CAS  PubMed  Google Scholar 

  53. Omotezako T, Onuma TA, Noshida H. DNA interference: DNA-induces gene silencing in the appendicularian Oikop. Proc Biol Sci. 2015;282(1807):20150435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Konadu KA, Chu J, Huang MB, et al. Association of cytokines with exosomes in the plasma of HIV-1-seropositive individuals. J Infect Dis. 2014;211:1712–6. E Pub Pre-Print

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mullen L, Hanschman EM, Herzenberg CHL, et al. Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol Med. 2015;21:98–108. PrePub(Feb13):TBA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. MacKenzie A, Wilson HL, Kiss-Toth E, et al. Rapid secretion of interleukin-1ß by microvesicle shedding. Immunity. 2001;8:825–35.

    Article  Google Scholar 

  57. Lenglet S, Montecucco F, Mach F. Role of matrix metalloproteinases in animal models of acute ischemic stroke. Curr Vasc Pharmacol. 2013;13:161–6. EPub PrePrint

    Article  CAS  Google Scholar 

  58. Sporer B. UKoedel, Paul R, et al.: Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol. 2000;102:125–30.

    Article  CAS  PubMed  Google Scholar 

  59. Muraski ME, Roycik MD, Newcomer RG, et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotech. 2009;9(1):24–46.

    Google Scholar 

  60. Shai O, Ould-Yahoui A, Ferhat L, et al. Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes. Glia. 2010;58(3):344–66.

    Google Scholar 

  61. Candela ME, Geraci E, Turturrici G, et al. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor 2 are released into the extracellular space from mouse mesoangioblast stem cells. J Cell Physiol. 2010;224(1):144–51.

    CAS  PubMed  Google Scholar 

  62. McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008;28(38):9451–62.

    Article  CAS  PubMed  Google Scholar 

  63. Justice PA, Sun W, Li Y, et al. Membrane vesiculation function and exocytosis of wild type and mutant matrix proteins of vesicular stomatitis virus. J Virol. 1995;69(5):3156–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hakulinen J, Sankkila L, Sugiyama N, et al. Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem. 2008;105(5):1211–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lozito TP, Tuan RS. Endothelial cell microparticles act as centers of matrix metalloproteinase-2 (MMP-2) activity and vascular matrix remodeling. J Cell Physiol. 2012;227(2):534–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanania R, Sun HS, Xu K, et al. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem. 2012;287(11):8468–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liubisavlievic S, Stojanovic I, Basic J, et al. The role of matrix metalloproteinase 3 and 9 in the pathogenesis of acute neuroinflammation. Implications for disease modifying therapy. J Mol Neurosci. 2015;56:840–7. EPub PrePrint(Feb22):TBA

    Article  CAS  Google Scholar 

  68. van Noort JM, Bsibsi M, Nacken P, et al. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol. 2012;44(10):1670–9.

    Article  PubMed  CAS  Google Scholar 

  69. Cid C, Alvaerez-Cermeno JC, Salinas M, et al. Anti-heat shock protein 90beta antibodies decrease pre-oligodendrocyte population in perinatal and adult cell cultures: Implications for remyelination in multiple sclerosis. J Neurochem. 2005;95:349–60.

    Article  CAS  PubMed  Google Scholar 

  70. Gangalum RK, Atanasov IC, Zhou ZH, et al. AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment cells. J Biol Chem. 2011;286(5):3261–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sevennson K, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid-raft mediated endocytosis negatively regulated by caveolin-1. J Bio Chem. 2013;288(24):17713–24.

    Article  CAS  Google Scholar 

  72. Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17(9):1239–48.

    Article  CAS  PubMed  Google Scholar 

  73. Wadhwa R, Ryu J, Ahn HM, et al. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem. 2015;290:8447–56. ePub Pre-print

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Orsini F, DeBlasion D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration, and brain homeostasis. Front Cell Neurosci. 2014;8:380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bochkov VN. Inflammatory profile of oxidized phospholipids. Thromb Haemost. 2007;97(3):348–54.

    CAS  PubMed  Google Scholar 

  77. Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 2014;8:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fruhbeis C, Frolich D, Kramer-Albers EM. Emerging roles of exosomes in neuron-glia communication. Front Physiol. 2012;30(3):119.

    Google Scholar 

  79. Bodin S, Viala C, Ragab A, et al. A critical role of lipid rafts in the organization of a key Fc-gamma-RIIa-mediated signaling pathway in human platelets. Thromb Haemost. 2003;89:318–30.

    CAS  PubMed  Google Scholar 

  80. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Molec Cell Biol. 2000;1:31–9.

    Article  CAS  Google Scholar 

  81. Foster LJ. deHoog CL, Mann M: Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Nat Acad Sci USA. 2003;100(10):5813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terasaki Y, Liu Y, Hawakawa K, et al. Mechanisms of neurovasculation dysfunction in acute ischemic brain. Curr Med Chem. 2014;21(18):2035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Google Scholar 

  84. de Rivero JP, Brand 3rd F, Adamczak S, et al. Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem. 2015;136:39–48. Pre-pub(Jan27):TBA

    Google Scholar 

  85. Sanborn MR, Thom SR, Bohman LE, et al. Temporal dynamics of microparticle elevation following subarachnoid hemorrhage. J Neurosurg. 2012;117(3):579–86.

    Article  PubMed  Google Scholar 

  86. Demirov DG, Freed EO. Retroviral budding. Virus Res. 2004;106(2):87–102.

    Article  CAS  PubMed  Google Scholar 

  87. Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012;109(11):4146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PloS Pathog. 2008;4(5):e1000065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Deng GM, Tsokos GC. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J Immunol. 2008;181(6):4019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cuadras MA, Greenberg HB. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology. 2003;313(1):308–21.

    Article  CAS  PubMed  Google Scholar 

  91. Lafont F, Tran VNG, Hanada K, et al. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 2002;21(17):4449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carter GC, Bernstone L, Sangani D, et al. HIV entry in macrophages is dependent on intact lipid rafts. Virology. 2009;386(1):192–202.

    Article  CAS  PubMed  Google Scholar 

  93. Laliberte JP, McGinnes LW, Peeples NE, et al. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. J Virol. 2006;80(21):10652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Karim S, Mirza Z, Kamal MA, et al. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Disord Drug Targets. 2014;13(7):1213–23.

    Article  CAS  PubMed  Google Scholar 

  95. Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun. 2015;45C:1–12.

    Article  CAS  Google Scholar 

  96. Corrales-Medina VF, Simkins J, Chirinos JA, et al. Increased levels of platelet microparticles in HIV-infected patients with good response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;54(2):217–8.

    Article  PubMed  Google Scholar 

  97. Alfahad T, Nath A. Retroviruses and amyotrophic lateral sclerosis. Antiviral Res. 2013;99(2):180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wordinger T, Gatson NN, Balai L, et al. Extracellular vesicles and their convergence with viral pathways. Adv Virol. 2012;2012:767694.

    Google Scholar 

  99. Saenz-Cuesia M, Osorio-Quereiata I, Otaequi D. Extracellular vesicles in multiple sclerosis: what are they telling us? [Reviewl]. Front Cell Neurosci. 2014;28(8):100.

    Google Scholar 

  100. Verderio C, Muzio M, Turola E, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol. 2012;72:610–24.

    Article  CAS  PubMed  Google Scholar 

  101. Peferoen L, Kipp M, VanDerValk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system [review]. Immunology. 2014;141(3):302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gatson NN, Williams JL, Powell ND, et al. Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via pregnancy-specific serum factors. J Neuroimmunol. 2011;230(1–2):105–13.

    Article  CAS  PubMed  Google Scholar 

  103. Williams JL, Gatson NN, Smith KM, et al. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol. 2013;149(2):236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kumar R, Kretzschmar B, Herold S, et al. Beneficial effect of chronic Staphylococcus aureus infection in a model of multiple sclerosis is mediated through secretion of extracellular adherence protein. J Neuroinflammation. 2015;12:22. PrePub PrePrint(Feb3):TBA

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Crookston KP, Sibbitt WL, Chang WL, et al. Circulating microparticles in neuropsychiatric systemic lupus erythematosus. Int Rheum Dis. 2013;16(1):72–80.

    Article  Google Scholar 

  106. Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: Prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis. 2015;77:257–65. Epub PrePrint

    Article  CAS  PubMed  Google Scholar 

  107. Singh J, Udgaonkar JB. Molecular mechanism of the misfolding and oligomerization of the prior protein: Current understanding and its implications. Biochemistry. 2015;54(29):4431–42.

    Article  CAS  PubMed  Google Scholar 

  108. Jaunmuktane Z, Meade S, Ellis M, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature. 2015;525(7568):247–50.

    Article  CAS  PubMed  Google Scholar 

  109. Lupton CJ, Steer DL, Wintrode PL, et al. Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem. 2015;290(40):24190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scherzinger E, Lurz R, Turmaine M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997;90(3):549–58.

    Article  CAS  PubMed  Google Scholar 

  111. Taylor DR, Hooper NM. Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-beta proteins. Semin Cell Dev Biol. 2007;18(5):638–48.

    Article  CAS  PubMed  Google Scholar 

  112. Taylor DR, Hooper NM. The prion proteins and lipid rafts. Mol Membr Biol. 2006;23(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  113. Erlich P, Dumestre-Perard C, Ling WL, et al. Complement protein C1q forms a complex with cytotoxic prion protein oligomers. J Biol Chem. 2010;285(25):19267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simak J, Holada K, D’Agnillo F, et al. Cellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasma. Transfusion. 2002;42:334–42.

    Article  CAS  PubMed  Google Scholar 

  115. Chen M, Inestrosa NC, Ross GS, et al. Platelets are the principal source of amyloid beta peptide in human blood. Biochem Biophyis Res Commun. 1995;213(1):96–103.

    Article  CAS  Google Scholar 

  116. Pienimaeki-Roemer A, Kuhlmann K, Bottcher A, et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion. 2015;55(3):507–21.

    Article  CAS  PubMed  Google Scholar 

  117. Bellingham SA, Guo BB, Coleman BM, et al. Exosomes: vehicles for the transport of toxic proteins associated with neurodegenerative disease? Front Physiol. 2012;3:124. 3 EPUB PREPRINT

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Munch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA. 2011;108(9):3548-ILLEG.

    Article  Google Scholar 

  119. Liu KX, Edwards B, Lee S, et al. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain. 2015;138:1167–81. PrePub PrePrint

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lee JY, Quaguchi Y, Li M, et al. Uncoupling of protein aggregation and neurodegeneration in a mouse amyotrophic lateral sclerosis model. Neurodegen Dis. 2015;15:339–49. TBA(Pre-Print)

    Article  CAS  Google Scholar 

  121. Gallegos S, Pacheco C, Peters C, et al. Features of alpha-synuclein that could esxplain progression and irreversibility of Parkinson’s disease. Front Neurosci. 2015;9:59.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dettmer U, Selkoe D, Bartels T. New insights into cellular alpha-synuclein homeostasis in health and disease. Curr Opin Neurobiol. 2015;15(36):15–22.

    Google Scholar 

  123. Shi M, Liu C, Cook TJ, et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128(5):639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Grey M, Dunning CJ, Gaspar R, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Checm. 2015;290(5):2969–82.

    Article  CAS  Google Scholar 

  125. Gui YX, Liu H, Zhang LS, et al. Altered microRNA in cerebrospinal fluid exosomes in Parkinson disease and Alzheimer disease. Oncotarget. 2015;6:37043–53. TBA(Pre-Pub):tba

    PubMed  PubMed Central  Google Scholar 

  126. Cooper JM, Wiklander PB, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014;29(12):1476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Treps L, Edmond S, Harford-Wright E, et al. Extra-cellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene. 2015;35:2615–23. PrePrint(in press):tba

    Article  PubMed  CAS  Google Scholar 

  128. Raymond AD, Diaz P, Chevelon S, et al. Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J Neurovirol. 2015;22:129–39. PrePub(TBA):tba

    Article  PubMed  CAS  Google Scholar 

  129. Hay JR, Johnson VE, Young AM, et al. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57.

    CAS  PubMed  Google Scholar 

  130. Tian Y, Salsbery B, Wang M, et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury [editorial pg 2015-6]. Blood. 2014;125(13):2151–9.

    Article  CAS  Google Scholar 

  131. Lockman PR, Mumper JMKJ, Allen DD. Nanoparticles surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting. 2004;12(9–10):635–41.

    Article  CAS  Google Scholar 

  132. Joachim E, Il-Doo K, Yinchuan J, et al. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Delivery and Translational Res. 2014;4(5):395–9.

    Article  CAS  Google Scholar 

  133. Cutler JI, Auyeung EA, Mirkin CA. Spherical nucleic acids [gold core]. J Am Chem Soc. 2012;134:1376–91.

    Article  CAS  PubMed  Google Scholar 

  134. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. Epub(InPrewss):tba

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sampey GC, Meyering SS, Asad-Zadeh M, et al. Exosomes and their role in CNS viral infections. J Neurovirol. 2014;20(3):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Alvarez-Erviti L, Seow Y, HaiFang Y, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [see online supplement for details]. Nat Biotech. 2011;29(4):341–5.

    Article  CAS  Google Scholar 

  137. Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial [See issue Sept. 13 for letters]. Lancet. 2014;383(9936):2213–21.

    Article  CAS  PubMed  Google Scholar 

  138. Malkki H. Could simvastatin slow down secondary progressive MS? [Comment on Chataway et al., in Lancet, June 28, 2014]. Nat Rev Neurol. 2014;10:241.

    Article  PubMed  Google Scholar 

  139. Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res. 2014;88:41–52.

    Article  CAS  PubMed  Google Scholar 

  140. Krisanova N, Sivko R, Kasatkina L, et al. Neuroprotection by lowering cholesterol: a decrease in the membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta. 2012;1822(10):1553–61.

    Article  CAS  PubMed  Google Scholar 

  141. Lei O, Peng WN, You H, et al. Statins in nervous system-associated diseases: angels or devils? Pharmazie. 2014;69(6):448–54.

    CAS  PubMed  Google Scholar 

  142. Tramontano AF, O’Leary J, Black AD, et al. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Com. 2004;320:34–8.

    Article  CAS  PubMed  Google Scholar 

  143. Suades R, Padro T, Alonso R, et al. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets, and inflammatory cells. Thromb Haemost. 2013;119(2):366–77.

    Article  CAS  Google Scholar 

  144. Relja B, Lehnert M, Seyboth K, et al. Simvastatin reduces mortality and hepatic injury after hemorrhage/resuscitation in rats. Shock. 2009;34:46–54. Epub preprint

    Article  CAS  Google Scholar 

  145. Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol. 2014;49(1):590–600.

    Article  CAS  PubMed  Google Scholar 

  146. Robinzon S, Dafa-Berger A, Dyer MD, et al. Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. J Virol. 2009;83(11):5495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal stem cells promotes functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711-ILLEG.

    Article  CAS  Google Scholar 

  148. Xin H, Li Y, Liu Z, et al. MiR-133 promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal stem cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cantaluppi V, Medica D, Mannari C, et al. Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant. 2015;30(3):410–22.

    Article  PubMed  Google Scholar 

  150. Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122:856–67. EpubPrePrint(TBA):TBA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schock SC, Edrissi H, Burger D, et al. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells. Biochem Biophyis Res Commun. 2014;450:912–7. PrePub PrePrint(TBA)

    Article  CAS  Google Scholar 

  152. Hayon Y, Shai E, Varon D, et al. The role of platelets and their microparticles in rehabilitation of ischemic brain tissue. CNS Neurol Disord Drug Targets. 2012;11(7):921–5.

    Article  CAS  PubMed  Google Scholar 

  153. Camussi G, Deregibus MC, Bruno S, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98–110.

    PubMed  Google Scholar 

  154. Sims PJ, Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: Evidence for a Ca2+−dependent exocytotic elimination of C5b-9 pores. Blood. 1986;68(2):556–61.

    CAS  PubMed  Google Scholar 

  155. Horstman LL, Jy W, Schultz DR, et al. Complement mediated fragmentation and lysis of opsonized platelets: gender differences in sensitivity. J Lab Clin Med. 1994;123:515–25.

    CAS  PubMed  Google Scholar 

  156. Pilzer D, Gasser O, Moskcovitch O, et al. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Sprig Semin Immunopath. 2005;27(3):375–87.

    Article  CAS  Google Scholar 

  157. Fluiter K, Opperhuizen AL, Morgan BP, et al. Inhibition of the membrane attack complex of the complement system reduces secondary neuronaxonal loss and promotes neurologica recovery after traumatic brain injury in mice. J Immunol. 2014;192(5):2339–48.

    Article  CAS  PubMed  Google Scholar 

  158. Sahu A, Morikis D, Labris JD. Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol. 2008;39(10):557–66.

    Article  Google Scholar 

  159. Risitano A, Ricklin D, Huang Y, et al. Peptide inhibitors of C3a activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria [with Commentary, pg 1975]. Blood. 2014;123(13):2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Davis AE, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008;45(16):4057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hill A, Hillman P, Richards SJ, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. New Engl J Med. 2006;355:1233–43.

    Article  PubMed  Google Scholar 

  162. Samadder NJ, Casaubon L, Silver F, et al. Neurological complications of paroxysmal nocturnal hemoglobinuria. Can J Neurol Sci. 2007;34(3):368–71.

    Article  PubMed  Google Scholar 

  163. Elward K, Griffiths M, Mizumo M, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem. 2005;280(43):36342–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

For their support, the Wallace H. Coulter Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenche Jy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Horstman, L.L., Jy, W., Ahn, Y.S. (2017). Cell-Derived Microparticles/Exosomes in Neuroinflammation. In: Minagar, A., Alexander, J. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-51220-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51220-4_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-51218-1

  • Online ISBN: 978-3-319-51220-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics