Skip to main content

Multiple Sclerosis: Clinical Features, Immunopathogenesis, and Treatment

  • Chapter
  • First Online:
Inflammatory Disorders of the Nervous System

Abstract

Classically, multiple sclerosis (MS) is characterized by relapses of neurological deficits followed by remission. At present mechanisms of progressive aspects of the disease are currently undergoing increasing attention. Updated diagnostic criteria and improved diagnostic techniques, particularly in the field of magnetic resonance imaging (MRI), have facilitated diagnosis and monitoring of MS patients. Advances in immunology, particularly regarding the role of Th17 helper cells and B cells, together with increasing insight into genetics of MS, continue to improve our knowledge of the disease mechanisms underlying MS.

Symptomatic treatment of MS represents an important aspect of comprehensive care. These include a multitude of symptoms ranging from fatigue, cognitive, and mood disorders to disorders of gait, spasticity, pain, and bladder and bowel abnormalities, as well as less common paroxysmal manifestations. These symptoms necessitate a myriad of treatment approaches tailored to individual patient needs. A boom in the development of disease-modifying therapies for MS has resulted in 14 currently FDA-approved medications for relapsing-remitting MS in 2016 compared to just a handful in the early 2000s.

The pivotal clinical trials are reviewed in regard to safety and efficacy for each of these medications. Of particular concern is the risk of progressive multifocal leukoencephalopathy (PML) with increasingly effective therapies. Such cases have been most commonly been associated with natalizumab (Tysabri®), but a very low incidence of this disorder has been associated with two new drugs, dimethyl fumarate (Tecfidera®) and fingolimod (Gilenya®).

Available data for medications in development is also briefly discussed, with a focus on B-cell therapy disability measures, progressive disease, and repair including remyelination. Development of these new targeted therapies represents an exciting next frontier in MS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Corticotrophin

APC:

Antigen-presenting cell

CIS:

Clinically isolated syndrome

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

Computerized tomography

DIR:

Double inversion recovery

DTI:

Diffusion tensor imaging

EAE:

Experimental allergic encephalomyelitis

EDSS:

Expanded disability status scale

GFAP:

Glial fibrillary acidic protein

HIV:

Human immunodeficiency virus

IL:

Interleukin

MBP:

Myelin basic protein

MHC:

Major histocompatibility class

MOG:

Myelin oligodendrocyte glycoprotein

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

NEDA:

No evidence of disease activity

PCR:

Polymerase chain reaction

PML:

Progressive multifocal leukoencephalopathy

PPMS:

Primary progressive multiple sclerosis

RRMS:

Relapsing-remitting multiple sclerosis

SLE:

Systemic lupus erythematosus

References

  1. Charcot JM. Histologie de la sclerose en plaques. Gaz Hop Paris. 1868;41:554–66.

    Google Scholar 

  2. Compston A, Ebers G, Lassman H, McDonald I, Mathews B, Wekerle H. McAlpine’s multiple sclerosis. 3rd ed. London: Churchill Livingstone; 1988.

    Google Scholar 

  3. Firth D. The case of sir Augustus d’Este. London: Cambridge University Press; 1947.

    Google Scholar 

  4. Kurtzke JF. A reassessment of the distribution of multiple sclerosis. Part one. Acta Neurologica Scand. 1975;51:110–36.

    Google Scholar 

  5. Kurtzke JF. A reassessment of the distribution of multiple sclerosis. Art two. Acta Neurologica Scand. 1975;51:137–57.

    Google Scholar 

  6. Weinshenker BG, Bass B, Rice GPA, et al. The natural history of multiple sclerosis: a geographically based study. 1. Clinical course and disability. Brain. 1989;112:133–46.

    Article  PubMed  Google Scholar 

  7. Schumacher GA, Beebe G, Kibler RF, Kurland LT, Kurtzke JF, McDowell F, Nagler B, Sibley W, Tourtellotte W, Willmon TL. Problems of experimental trials of therapy in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann New York Academy of Sciences, NY. 1965;123:552–68.

    Google Scholar 

  8. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–31.

    Article  CAS  PubMed  Google Scholar 

  9. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001;50:121–7.

    Article  CAS  PubMed  Google Scholar 

  10. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Flippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Noseworthy JH, Luccinetti C, Rodriguez M, Weinschenker BG. Multiple sclerosis. N Engl J Med. 2000;343:938–52.

    Article  CAS  PubMed  Google Scholar 

  12. Leibowitz U, Halpern L, Alter M. Clinical studies of multiple sclerosis in Israel. 5. Progressive spinal syndromes and multiple sclerosis. Neurology. 1967;17:988–92.

    Article  CAS  PubMed  Google Scholar 

  13. Confavreux C, Vukusic S, Moreau T, Adeline P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pittock SJ, Mayr WT, McClelland RL, Jorgensen NW, Weigand SD, Noseworthy JH, Weinshenker BG, Rodriguez M. Change in MS-related disability in a population-based cohort: a 10-year follow-up study. Neurology. 2004;62:51–9.

    Article  CAS  PubMed  Google Scholar 

  15. Berger J, Sheremata WA. Persistent neurological deficit in multiple sclerosis precipitated by hot bath test. JAMA. 1983;133:1224–6.

    Google Scholar 

  16. Berger JR, Sheremata WA, Melmed E. Paroxysmal dystonia as the initial manifestation of multiple sclerosis. Arch Neurol. 1984;41:747–50.

    Article  CAS  PubMed  Google Scholar 

  17. Ramagopalan S, Meier U, Goldacre R, Goldacre M. Co-associations of multiple sclerosis with schizophrenia and bipolar disorder: record linkage studies. Presented at: ACTRIMS-ECTRIMS MS, Boston; 2014.

    Google Scholar 

  18. Jacobs LD, Beck RW, Simon JH, Kinkel P, Brownscheidle CM, Murray TJ, Simonian NA, Slasor PJ, Sandrock AW, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med. 2000;343:898–904.

    Article  CAS  PubMed  Google Scholar 

  19. Goodin DS, Reder AT, Ebers GC, et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology. 2012;78(17):1315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46:907–11.

    Article  CAS  PubMed  Google Scholar 

  21. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørenson PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell R, Barkhof F, Bebo Jr B, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pzzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bornstein MB, Miller A, Slagle S, Weitzman M, Drexler E, Keilson M, Spada V, Weiss W, Appel S, Rolak L, et al. A placebo controlled, double-blind, randomized, two-center, pilot trial of Cop 1 in chronic progressive multiple sclerosis. Neurology. 1991;41:533–9.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson AJ, Montalban X, Barkhof F, Brochet B, Flippi M, Miller DH, Polman CH, Stevenson VL, McDonald WI. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol. 2000;47(6):831–5.

    Article  CAS  PubMed  Google Scholar 

  24. Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14(2):208–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wolinsky JS, Narayana PA, O’Connor P, Coyle PK, Ford C, Johnson K, Miller A, Pardo L, Kadosh S, Ladkani D. PROMiSe Trial Study Group. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-control trial. Ann Neurol. 2007;61(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  26. Lassmann H. Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci. 2007;259(1–2):3–6.

    Article  CAS  PubMed  Google Scholar 

  27. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, Mandrekar J, Bramow S, Metz I, Brück W, Lassmann H, Lucchinetti CF. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78:710–21.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cottrell DA, Kremenchutzky M, Rice GPA, et al. The natural history of multiple sclerosis: a geographically based study. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122:625–89.

    Article  PubMed  Google Scholar 

  29. Sheremata WA, Berger JR, Harrington Jr W, Ayyar R, Stafford JM, Defreitas E. Human lymphotropic (HTLV-I) associated myelopathy: a report of ten cases born in the United States. Arch Neurol. 1992;31:34–8.

    Google Scholar 

  30. Biswas HH, Engstrom JW, Kaidarova Z, Garratty G, Gibble JW, Newman BH, Smith JW, Ziman A, Fridey JL, Sacher RA, Murphy EL. Neurologic abnormalities in HTLV-1 and HTLV-II infected individuals without overt myelopathy. Neurology. 2009;73(10):781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lowis GW, Sheremata WA, Minagar A. Epidemiologic features of HTLV-II: serological and molecular evidence. Ann Epidemiol. 2002;12:46–66.

    Article  PubMed  Google Scholar 

  32. Fink JK. Hereditary spastic paraplegia: the pace quickens. Ann Neurol. 2002;51:669–72.

    Article  PubMed  Google Scholar 

  33. Sadovnick AD, Ebers GC. Epidemiology of multiple sclerosis: a critical overview. Can J Neurol Sci. 1993;20:17–9.

    Article  CAS  PubMed  Google Scholar 

  34. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T, et al. Rate of pregnancy-related relapse in multiple sclerosis. N Engl J Med. 1998;339:285–91.

    Article  CAS  PubMed  Google Scholar 

  35. Voskuhl RR, Wang H, Wu TC, Sicotte NL, Nakamura K, Kurth F, Itoh N, BArdens J, Bernard JT, Corboy JR, Cross AH, Dhib-Jalbut S, Ford CC, Frohman EM, Giesser B, Jacobs D, Kasper LH, Lynch S, Parry G, RAcke MK, REder AT, Rose J, Wingerchuk DM, MacKenzie-Graham AJ, Arnold DL, Tseng CH, Elashoff R. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomized, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  36. Confavreux C. Infections and the risk of relapse in multiple sclerosis. (Editorial). Brain. 2002;125:933–4.

    Article  PubMed  Google Scholar 

  37. Warren S, Greenhill S, Warren KG. Emotional stress and the development of multiple sclerosis: case–control evidence of a relationship. J Chronic Dis. 1982;35:821–31.

    Article  CAS  PubMed  Google Scholar 

  38. Grant I, Brown GW, Harris T, McDonald WI, Patterson T, Trimble MR. Severely threatening events and marked life difficulties preceding onset or exacerbation of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989;52:8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warren S, Warren KG, Cockerill R. Emotional stress and coping in multiple sclerosis and exacerbations. J Psychosom Res. 1991;35:37–47.

    Article  CAS  PubMed  Google Scholar 

  40. Mohr DC, Goodkin DE, Bacchetti P, Boudewyn AC, Huang L, Marietta P, Cheuk W, Dee B. Psychological stress and he subsequent appearance of new brain MRI lesions in MS. Neurology. 2000;55:55–61.

    Article  CAS  PubMed  Google Scholar 

  41. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, DAumer M, Ebers GC. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain. 2010;133:1914–29.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lublin FD, Baier M, Gutter G. Effect of relapses on development of multiple sclerosis. Neurology. 2003;61:1528–32.

    Article  PubMed  Google Scholar 

  43. Cala LA, Mastaglia FL, Black JL. Computerized tomography of brain and optic nerve in multiple sclerosis: observation in 100 patients including serial studies in 16. J Neurol Sci. 1978;36:411–26.

    Article  CAS  PubMed  Google Scholar 

  44. Hershey LA, Gado MH, Trotter JL. Computerized tomography in the diagnostic evaluation of multiple sclerosis. Ann Neurol. 1979;5:32–9.

    Article  CAS  PubMed  Google Scholar 

  45. Barrett L, Drayer B, Shin C. High-resolution computerized tomography in the diagnostic evaluation of multiple sclerosis. Ann Neurol. 1985;17:33–8.

    Article  CAS  PubMed  Google Scholar 

  46. Bradley WG, Walauch Y, Yadley RA, Wycoff RR. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology. 1984;152:895–702.

    Article  Google Scholar 

  47. Sheldon JJ, Siddharthan R, Tobias J, Sheremata WA, et al. Magnetic resonance imaging of multiple sclerosis: comparison with clinical, paraclinical, laboratory and CT examination. AJNR. 1985;6:683–90.

    Google Scholar 

  48. Jacobs L, Kinkel WR, Polachini I, Kinkel RP. Correlations of nuclear magnetic resonance imaging, computerized tomography, and clinical profiles in multiple sclerosis. Neurology. 1986;36:27–34.

    Article  CAS  PubMed  Google Scholar 

  49. Honig LS, Siddharthan R, Sheremata WA, Sheldon JJ, Sazant A. Multiple sclerosis: correlation of magnetic resonance imaging with cerebrospinal fluid findings. Neurol Neurosurg Psychiatry. 1988;51:27–280.

    Article  Google Scholar 

  50. Fox R et al. Consortium of Multiple Sclerosis Centers annual meeting. Indianapolis; 2015.

    Google Scholar 

  51. Seewann A, Kooi EJ, Pouwels PJ, Wattjes MP, van der Valk P, Barkhof F, Polman CH, Geurts JJ. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology. 2012;78(5):302–8.

    Article  CAS  PubMed  Google Scholar 

  52. Honig LS, Sheremata WA. Magnetic resonance imaging of spinal cord lesions in multiple sclerosis. Neurol Neurosurg Psychiatry. 1989;52:459–66.

    Article  CAS  Google Scholar 

  53. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med. 2002;348:158–64.

    Article  Google Scholar 

  54. Leist TP, Gobbini MI, Frank JA, McFarland HF. Enhancing magnetic resonance imaging lesions and cerebral atrophy in patients with relapsing multiple sclerosis. Arch Neurol. 2000;57:57–60.

    Article  Google Scholar 

  55. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-wighted spin-echo magnetic resonance images in multiple sclerosis. Neurology. 1998;50:1282–8.

    Article  PubMed  Google Scholar 

  56. Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006;5:158–70.

    Article  PubMed  Google Scholar 

  57. Kappos L et al. Predictive value of NEDA for disease outcomes over 6 years in patients with RRMS. Presented at: 31st ECTRIMS Annual Congress; 7–10 Oct 2015; Barcelona; Abstract 570.

    Google Scholar 

  58. Cree BAC et al. Long-term effects of fingolimod on NEDA by year of treatment. Poster presented at: 31st ECTRIMS Annual Congress; 7–10 Oct 2015; Barcelona. Poster Session 1; P627.

    Google Scholar 

  59. Filippi M, Rocca MA. MR imaging of gray matter involvement in multiple sclerosis: implications for understanding disease pathophysiology and monitoring treatment efficacy. Am J Neuroradiol. 2010;31:1171–7.

    Article  PubMed  Google Scholar 

  60. Moll NM, Rietsch AM, Thomas S, et al. Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol. 2011;70(5):764–73.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fox RJ, Sakaie K, Lee JC, et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. ANJR. 2012;33(4):695–700.

    CAS  Google Scholar 

  62. Pitt D, Boster A, Pei W, et al. Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol. 2010;67(7):812–8.

    Article  PubMed  Google Scholar 

  63. Burman J, Zetterberg H, Fransson M, Loskog AS, Raininko R, Fagius J. Assessing tissue damage in multiple sclerosis: a biomarker approach. Acta Neurol Scand. 2014;130:81–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kuhle J, Plattner K, Bestwick JP, et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler. 2013;19:1597–603.

    Article  PubMed  CAS  Google Scholar 

  65. Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002;125:1462–73.

    Article  CAS  PubMed  Google Scholar 

  66. De Stefano N, Narayanan S, Francis GS, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol. 2001;5:65–70.

    Google Scholar 

  67. Sobel RA. The pathology of multiple sclerosis. In: Multiple sclerosis. Antel J, editor. Neurologic clinics. Philadelphia: Sanders; 1995; 13(1):1–22.

    Google Scholar 

  68. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263–73.

    Article  PubMed  Google Scholar 

  69. Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012;5:13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hedström AK, Hiller J, Olsson T, Alfredsson L. Smoking and multiple sclerosis susceptibility. Eur J Epidemiol. 2013;28(11):867–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61:288–99.

    Article  PubMed  Google Scholar 

  72. Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol. 2006;49(3):499–503.

    Article  Google Scholar 

  73. Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic T17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496:513–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic T17 cells. Nature. 2013;496:518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–14.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sotirchos ES, Bhargava P, Eckstein C, et al. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology. 2016;86(4):382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hedström AK, Olsson T, Alfredsson L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler J. 2012;18(9):1334–6.

    Article  Google Scholar 

  78. Hedström AK, Bomfirm IL, Barcellos L, Gianfrancesco M, Schaefer C, Kockum I, Olsson T, Alfredsson L. Interaction between adolescent obesity and HLA risk genes in the etiology of multiple sclerosis. Neurology. 2014;82(10):867–72.

    Article  CAS  Google Scholar 

  79. Simpson Jr S, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82:1132–41.

    Article  PubMed  Google Scholar 

  80. Strachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax. 2000;55(Suppl 1):S2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Correale J. Helminth/parasite treatment of multiple sclerosis. Curr Treat Options Neurol. 2014;16:296.

    Article  PubMed  Google Scholar 

  82. Correale J, Farez MF. The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol. 2011;233(1–2):6–11.

    Article  CAS  PubMed  Google Scholar 

  83. Fleming JO. Helminth therapy and multiple sclerosis. Int J Parasitol. 2013;43(3–4):259–74.

    Article  CAS  PubMed  Google Scholar 

  84. Mielcarz DW, Kasper LH. The gut microbiome in multiple sclerosis. Curr Treat Options Neurol. 2015;17:18.

    Article  Google Scholar 

  85. Oppenheimer DR. Demyelinating diseases. In: Blackwood W, Corsellis JAN, editors. Greenfield’s neuropathology. 3rd ed. London: Edward Arnold; 1976. p. 470–99.

    Google Scholar 

  86. Lumsden CE. The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. New York: Elsevier; 1969. p. 217–309.

    Google Scholar 

  87. Adams RD, Kubick CS. The morbid anatomy of the demyelinative disease. Am J Med. 1952;12:510–46.

    Article  CAS  PubMed  Google Scholar 

  88. Zimmerman HM, Netsky HG. The pathology of multiple sclerosis. Res Publ Res Nerv Ment Dis. 1950;28:271–312.

    CAS  Google Scholar 

  89. Lampert PW. Fine structure of the demyelinating process. In: Hallpike JF, Adams CWM, Tourtelotte WW, editors. Multiple sclerosis: pathology, diagnosis and management. Baltimore: Williams and Wilkins; 1983. p. 29–46.

    Google Scholar 

  90. Trapp BD, Peterson J, Ransahoff RM, Rudick R, Moerk S, Boe L. Axonal transaction in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.

    Article  CAS  PubMed  Google Scholar 

  91. Lassmann H, Vass K. Are current immunological concepts of multiple sclerosis reflected by the Immunopathology of its lesions? Springer Semin Immunopathol. 1995;17:77–87.

    Article  CAS  PubMed  Google Scholar 

  92. Lassman H, Raine CS, Antel J, Prineas JW. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol. 1998;86:213–7.

    Article  Google Scholar 

  93. Lucchinetti C, Brueck W, Paris J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.

    Article  CAS  PubMed  Google Scholar 

  94. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol. 1995;37:424–35.

    Article  CAS  PubMed  Google Scholar 

  95. Poser C. The pathogenesis of multiple sclerosis: a commentary. Clin Neurol Neurosurg. 2000;102:191–204.

    Article  CAS  PubMed  Google Scholar 

  96. Khan N, Smith MT. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology. 2014;22(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  97. Pender MP, Sears TA. Involvement of the dorsal root ganglion in acute experimental allergic encephalomyelitis in the Lewis rat: a histological and electrophysiological study. J Neurol Sci. 1986;72(2–3):231–42.

    Article  CAS  PubMed  Google Scholar 

  98. Sadovnick AD, Armstrong H, Rice GF, et al. A population based study of multiple sclerosis in twins: an update. Ann Neurol. 1993;33:281–5.

    Article  CAS  PubMed  Google Scholar 

  99. Sadovnick AD, Baird PA, Ward RH. Multiple sclerosis: update risks for relatives. Am J Med Genet. 1988;29:533–41.

    Article  CAS  PubMed  Google Scholar 

  100. Didonna A, Oksenberg JR. Genetic determinants of risk and progression in multiple sclerosis. Clin Chim Acta. 2015;449:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. De Jager P et al. ACTRIMS-ECTRIMS. Boston, MA; 2014.

    Google Scholar 

  102. Sawcer S, Ban M, Maranian M, et al. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet. 2005;77:454–67.

    Article  PubMed  Google Scholar 

  103. Kaushansky N, Altmann DM, David CS, Lassmann H, Ben-Nun A. DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP). J Neuroinflammation. 2012;9:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. International Multiple Sclerosis Genetics Consortium. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Brain. 2010;133:2603–11.

    Article  Google Scholar 

  105. Gregory SG, Schmidt S, Seth P, et al. Interleukin 7 receptor alpha chain shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39:1083–11.

    Article  CAS  PubMed  Google Scholar 

  106. Gregory AP, Dendrou CA, Attfield KE, et al. TNF receptor 1 genetic risks mirrors outcome of ant-TNF therapy in multiple sclerosis. Nature. 2012;488:508–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Couturier N, Bucciarelli F, Nurtdinov RN, et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain. 2011;134:693–703.

    Article  PubMed  Google Scholar 

  108. Sturner KH, Borgmeyer U, Schulze C, Pless O, Martin R. A multiple sclerosis-associated variant of CBLB links genetic risk with type I IFN function. J Immunol. 2014;193:4439–47.

    Article  PubMed  CAS  Google Scholar 

  109. Jersild C, Fog T, Hansen GS, Thomsen M, Svejgaard A, Dupont B. Histocompatibility determinants in multiple sclerosis with special reference to clinical course. Lancet. 1973;2:1221–5.

    Article  CAS  PubMed  Google Scholar 

  110. Healy BC, Liguori M, Tran D, et al. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology. 2010;75:634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qju W, Raven S, James I, et al. Spinal cord involvement in multiple sclerosis: a correlative MRI and high-resolution HLA-DRB1 genotyping study. J Neurol Sci. 2011;300:114–9.

    Article  CAS  Google Scholar 

  112. Okuda DT, Srinivasan R, Oksenberg JR, et al. Genotype-phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain. 2009;132:250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J. HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol. 2000;48:211–9.

    Article  CAS  PubMed  Google Scholar 

  114. Smestad C, Brynedal B, Jonasdottir G, et al. The impact of HLA-A and –DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. Eur J Neurol. 2007;14:835–40.

    Article  CAS  PubMed  Google Scholar 

  115. Esposito F, Sorosina M, Ottoboni L, et al. A pharmacogenetics study implicates SLC9A9 in multiple sclerosis disease activity. Ann Neurol. 2015;78:115–27.

    Article  CAS  PubMed  Google Scholar 

  116. Dhib-Jalbut S, Valenzuela RM, Ito K, Kaufman M, Picone AM, Buyske S. HLA DR and DQ alleles and haplotypes associated with clinical response to glatiramer acetate in multiple sclerosis. Mult Scler Relat Disord. 2013;2(4):340–8.

    Article  PubMed  Google Scholar 

  117. Levin LI, Munger KL, Ruberstone MV, et al. Multiple sclerosis and Epstein-Barr virus. JAMA. 2003;289:1533–6.

    Article  PubMed  Google Scholar 

  118. DeLorenzo GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A. Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol. 2006;63(6):839–44.

    Article  Google Scholar 

  119. Woods DD, Bilbao JM, O’Connor P, Moscarello MA. A highly deaminized form of myelin basic protein in Marburg’s disease. Ann Neurol. 1996;40:18–24.

    Article  Google Scholar 

  120. Schwartz S, Mohr A, Knauth M, Wildemann B, Storch-Hagenlocher B. Acute disseminated encephalomyelitis. A follow-up study of 40 adult patients. Neurology. 2001;56:1312–8.

    Google Scholar 

  121. Hartung HP, Grossman RI. ADEM. Distinct disease or part of the MS spectrum? Neurology. 2001;56:1257–60.

    Article  CAS  PubMed  Google Scholar 

  122. Murthy JM, Yangala R, Meena AK, Jaganmohan-Reddy J. Acute disseminated encephalomyelitis: clinical and MRI study from South India. J Neurol Sci. 1999;165:133–6.

    Article  CAS  PubMed  Google Scholar 

  123. Patterson PY. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med. 1960;111:119–36.

    Article  Google Scholar 

  124. Bornstein MB, Appel SH. Application of tissue culture to the study of experimental allergic encephalomyelitis. 1. Patterns of demyelination. J Neuropathol Exp Neurol. 1961;20:141–57.

    Article  Google Scholar 

  125. Bornstein MB, Raine CS. Multiple sclerosis and experimental allergic encephalomyelitis: specific demyelination of CNS in culture. Neuropathol Appl Neurobiol. 1977;3:359–67.

    Article  Google Scholar 

  126. Ben-Nun A, Cohen IR. Genetic control of experimental autoimmune encephalomyelitis at the level of cytotoxic lymphocytes in guinea pigs. Eur J Immunol. 1982;12:709–13.

    Article  CAS  PubMed  Google Scholar 

  127. Owens T, Sriram S. The immunology of multiple sclerosis and its animal model experimental allergic encephalomyelitis. Neurol Clin. 1995;13(1):57–73.

    Google Scholar 

  128. Massacesi L, Genain CP, Lee-Parritz D, Letvin NL, Confield D, Hauser SL, et al. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: as new model for multiple sclerosis. Ann Neurol. 1995;37:519–30.

    Article  CAS  PubMed  Google Scholar 

  129. Uccelli A, Giunti D, Capello E, Roccatagliata L, Mancardi GL. EAE in the common marmoset Callithrix jacchus. Int MS J. 2003;10:6–12.

    CAS  PubMed  Google Scholar 

  130. Bronstein JM, Lallone RL, Seitz RS, Ellison GW, Myers LW. A humoral response to oligodendrocyte-specific protein in MS. A potential molecular mimic. Neurology. 1999;53:154–61.

    Article  CAS  PubMed  Google Scholar 

  131. Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2004;349:139–45.

    Article  Google Scholar 

  132. Yu T, Ellison GW, Mendoza F, Bronstein JM. T-cell responses to oligodendrocyte-specific protein in multiple sclerosis. J Neurosci Res. 2001;66:506–9.

    Article  Google Scholar 

  133. Adorini L, Singaglia F. Pathogenesis and immunotherapy of autoimmune disease. Immunol Today. 1997;18:209–11.

    Article  CAS  PubMed  Google Scholar 

  134. Özenci V, Kouwenhoven M, Huang YM, Xiao BG, Kivisäkk P, Fredrikson S, Link H. Multiple sclerosis: levels of interleukin-10-secreting blood mononuclear cells are low in untreated patients but augmented during interferon-β-1b treatment. Scand J Immunol. 1999;49:554–61.

    Article  PubMed  Google Scholar 

  135. Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, Hafler DA. Functional inflammatory profiles distinguished myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med. 2015;7(287):1–10.

    Article  CAS  Google Scholar 

  136. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal MR, Steinman L, Raman C. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16(4):406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wekerle H. Immune pathogenesis of multiple sclerosis. Brain autoimmune reactivity and its control by neuronal function. Mult Scler. 1998;4:136–7.

    Article  CAS  PubMed  Google Scholar 

  138. Yang Y, Tomura M, Ono S, Hamaoka T, Fujiwara H. Requirement for IFN-γ in IL-12 production induced by collaboration between Vα14+NKT cells and antigen-presenting cells. Int Immunol. 2000;12:1669–75.

    Article  CAS  PubMed  Google Scholar 

  139. Liu C-C, Young LHY, Young JD-E. Lymphocyte-mediated cytolysis and disease. N Engl J Med. 2004;335:1651–9.

    Google Scholar 

  140. Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9:540–9.

    Article  CAS  PubMed  Google Scholar 

  141. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 1992;356:63–6.

    Article  CAS  PubMed  Google Scholar 

  142. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068–101.

    CAS  PubMed  Google Scholar 

  143. Frenette PS, Wagner DD. Adhesion molecules--Part 1. N Engl J Med. 1996;334:1526–9.

    Article  CAS  PubMed  Google Scholar 

  144. Frenette PS, Wagner DD. Adhesion molecules--Part II: blood vessels and blood cells. N Engl J Med. 1996;335:43–5.

    Article  CAS  PubMed  Google Scholar 

  145. von Andrian UH, MacKay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med. 2000;343:1020–34.

    Article  Google Scholar 

  146. von Adrian UH, Engelhardt B. α4 integrins as therapeutic targets in autoimmune disease. N Engl J Med. 2004;348:68–72.

    Article  Google Scholar 

  147. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98.

    Article  CAS  PubMed  Google Scholar 

  148. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  149. Matusevicius D, Kivisäkk P, He B, Kostulas N, Özenci V, Fredikson S, Link H. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mul Scler J. 1999;5(2):101–4.

    Article  CAS  Google Scholar 

  150. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172(1):146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Alalrd J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8:500–8.

    Article  CAS  PubMed  Google Scholar 

  152. Kostic M, Dzopalic T, Zivanovic S, Zivkovic N, Cvetanovic A, Stojanovic I, Vojinovic S, Marjanovic G, Savic V, Colic M. IL-17 and glutamate excitotoxicity in the pathogenesis of multiple sclerosis. Scand J Immunol. 2014;79(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  153. Elain G, Jeanneau K, Rutkowska A, Mir AK, Dev KK. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia. 2014;62(5):725–35.

    Article  PubMed  Google Scholar 

  154. Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev. 1999;79:181–213.

    CAS  PubMed  Google Scholar 

  155. Takada Y, Elices MJ, Crouse C, Hemler ME. The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. EMBO J. 1989;8:1361–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  157. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  CAS  PubMed  Google Scholar 

  158. Stüve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Hemmer B, Monson NL, Racke MK. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2006;59(5):745–7.

    Google Scholar 

  159. Piccio L, Rossi B, Scarpini E, Laudanna C, et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein Ligand-1 and heterotrimeric Gi-Linked receptors. J Immunol. 2002;168:1940–849.

    Article  CAS  PubMed  Google Scholar 

  160. Minagar A, Jy W, Jimenez JJ, Mauro LM, Horüman L, Sheremata WA, Ahn YS. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001;56:1319–24.

    Article  CAS  PubMed  Google Scholar 

  161. Qin S, Rottman JB, Myers P, et al. The chemokine receptors CSCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reaction. J Clin Invest. 1998;101:746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernandez O, Brassat D, Comabella M, Wang J, Barcellos LF, Baranzini SE, Oksenberg JR. Genome-wide pharmacogenomics analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 2008;65(3):337–44.

    Article  PubMed  Google Scholar 

  163. Study of Tecelan (Imilecleucel-T) in secondary progressive multiple sclerosis (Abili-T). ClinicalTrials.gov, Jul 7, 2015. Accessed Feb 27, 2016 from https://clinicaltrials.gov/ct2/show/NCT01684761.

  164. Murray TJ. Amantadine therapy for fatigue in MS. Can J Neurol Sci. 1994;21:9–14.

    Article  PubMed  Google Scholar 

  165. Krupp LB, Coyle PK, Doscher C, et al. Fatigue therapy in MS: results of a double-blind, randomized, parallel trial of amantadine, pemoline, and placebo. Neurology. 1995;45:1956–61.

    Article  CAS  PubMed  Google Scholar 

  166. Rammohan KW, Rosenberg JH, Lynn DJ, et al. Efficacy and safety of modafinil (Provigil) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study. J Neurol Neurosurg Psychiatry. 2002;72:150–79.

    Article  Google Scholar 

  167. Traugott U. Detailed analysis of immunomodulatory properties of fluoxetine (Prozac) in chronic experimental allergic encephalomyelitis in SJL/J mice. Neurology. 1998;50:1998. (abstract)

    Google Scholar 

  168. Goodman AD, Brown TR, Edwards KR, et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol. 2010;68(4):494–502.

    Article  CAS  PubMed  Google Scholar 

  169. Goodman AD, Brown TR, Krupp LB, et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet. 2009;373(9665):732–8.

    Article  CAS  PubMed  Google Scholar 

  170. Korenke AR, Rivey MP, Allington DR. Sustained-release fampridine for symptomatic treatment of multiple sclerosis. Ann Pharmacother. 2008;42(10):1458–65.

    Article  CAS  PubMed  Google Scholar 

  171. Penn RD, Savoy SM, Corcos D, et al. Intrathecal baclofen for severe spinal spasticity. N Engl J Med. 1989;320:1517–21.

    Article  CAS  PubMed  Google Scholar 

  172. Nance P, Sheremata WA, Lynch SG, et al. Relationship of the antispasticity effect of tizanidine to plasma concentration in patients with multiple sclerosis. Arch Neurol. 1997;54:731–06.

    Article  CAS  PubMed  Google Scholar 

  173. Rossanese M, Novara G, Challacombe B, Iannetti A, Dasgupta P, Ficarra V. Critical analysis of phase II and III randomized control trials evaluating efficacy and tolerability of a β3-adrenoreceptor agonist for overactive bladder. BJU Int. 2015;115(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  174. Mehnert U, Birzele J, Reueter K, Schurch B. The effect of botulinum toxin type a on overactive bladder symptoms in patients with multiple sclerosis: a pilot study. J Urol. 2010;184(3):1011–116.

    Article  CAS  PubMed  Google Scholar 

  175. Goessaert AS, Everaert KC. Onabotulinum toxin A for the treatment of neurogenic detrusor overactivity due to spinal cord injury or multiple sclerosis. Expert Rev Neurother. 2012;12(7):763–75.

    Article  CAS  PubMed  Google Scholar 

  176. Browne C, Salmon N, Kehoe M. Bladder dysfunction and quality of life for people with multiple sclerosis. Disabil Rehabil. 2015;37:2350–8.

    Article  PubMed  Google Scholar 

  177. Solaro C, Uccelli MM, Guglieri P, Uccelli A, Mancardi GL. Gabapentin is effective in treating nocturnal painful spasms in multiple sclerosis. Mult Scler. 2000;6(3):192–3.

    Article  CAS  PubMed  Google Scholar 

  178. Rose AS, Kuzma JW, Kurtzke JF, et al. Cooperative study in the evaluation of therapy in multiple sclerosis: ACTH vs. placebo. Final Report. Neurology. 1970;20 Part 2:1–19.

    Google Scholar 

  179. Beck BW, Cleary PA, Anderson MM, et al. A randomized controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med. 1992;326:581–8.

    Article  CAS  PubMed  Google Scholar 

  180. Diem R, Hobom M, Maier K, Weissert R, Storch MK, Meyer R, Bähr M. Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci. 2003;23(18):6993–7000.

    CAS  PubMed  Google Scholar 

  181. Diem R, Sättler MB, Merkler D, et al. Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain. 2005;129(Pt 2):375–85.

    Google Scholar 

  182. Botticelli LJ, Wurtman RJ. Septo-hippocampal cholinergic neurons are regulated transynaptically by endorphin and corticotrophin neuropeptides. J Neurosci. 1982;2:1316–21.

    CAS  PubMed  Google Scholar 

  183. Spruijt BM, Van Rijzingen I, Masswinkel H. The ACTH 4-9 analog Org2766 modulates the behavioral changes induced by NMDA and the NMDA receptor antagonist AP5. J Neurosci. 1994;14:3225–30.

    CAS  PubMed  Google Scholar 

  184. Hol EM, Mandys V, Sodnar P, Gispen WH, Bar PR. Protection by ACTH4-9 analogue against the toxic effects of cisplatin and taxol on sensory neurons and Glial cells in vitro. J Neurosci Res. 1994;39:178–85.

    Article  CAS  PubMed  Google Scholar 

  185. O’Connor PW, Goodman A, Willmer-Hulme AJ, et al. Randomized. Multicenter trial of intravenous natalizumab in acute MS relapses: clinical and MRI effects. Neurology. 1994;62:2038–43.

    Article  CAS  Google Scholar 

  186. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. 1. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43:655–61.

    Article  Google Scholar 

  187. Paty DW, Li KDB, the UBC MS/MRI Group and the IFN Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Neurology. 1993;42:662–7.

    Article  Google Scholar 

  188. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 1996;39:285–94.

    Article  CAS  PubMed  Google Scholar 

  189. Rudick RA, Goodkin DE, Jacobs LD, et al. Impact of interferon beta-1a on Neurologic disability in relapsing multiple sclerosis. Neurology. 1997;49:358–63.

    Article  CAS  PubMed  Google Scholar 

  190. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in multiple sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet. 2002;352:1498–504.

    Google Scholar 

  191. Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O’Connor P, Monaghan E, Li D, Weinshenker B. Randomized, comparative study of interferon ß-1a treatment regimens in MS: the EVIDENCE Trial. Neurology. 2002;59:1496–506.

    Article  CAS  PubMed  Google Scholar 

  192. The PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group. PRISMS-4: longer term efficacy of interferon-beta-1a in relapsing MS. Neurology. 2001;56:1628–36.

    Article  Google Scholar 

  193. Cohen BA, Rivera VM. PRISMS: the story of a pivotal clinical trial series in multiple sclerosis. Curr Med Res Opin. 2010;26(4):827–38.

    Article  PubMed  Google Scholar 

  194. Calabresi PA, Kieseier BC, Arnold DL, et al. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomized, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65.

    Article  CAS  PubMed  Google Scholar 

  195. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology. 1995;45:1268–76.

    Article  CAS  PubMed  Google Scholar 

  196. Johnson KP, Brooks BR, Ford CC, et al. Sustained clinical benefits of Glatiramer acetate (Copaxone) in multiple sclerosis patients observed for 6 years. Mult Scler. 2000;6:255–66.

    Article  CAS  PubMed  Google Scholar 

  197. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R, and for the GALA study group. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013;73(6):705–13.

    Article  CAS  PubMed  Google Scholar 

  198. Stone LA, Frank JA, Albert PS, et al. Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology. 1997;49:862–9.

    Article  CAS  PubMed  Google Scholar 

  199. Mancardi GL, Sardanelli F, Parodi RC, et al. Effect of copolymer-1 on serial gadolinium-enhanced RMI in relapsing remitting multiple sclerosis. Neurology. 1998;50:1127–33.

    Article  CAS  PubMed  Google Scholar 

  200. Dalton CM, Miszkiel KA, Barker GJ, et al. The effect of natalizumab on conversion of T1 gadolinium enhancing lesions to T1 hypodense lesions. Neurology. 2004;60(Supp1):S484.

    Google Scholar 

  201. Rudick RA, Fisher E, Lee J-C, Simon J, Jacobs L, and the Multiple Sclerosis Collaborative Research Group. Us of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology. 1999;53:1698–704.

    Article  CAS  PubMed  Google Scholar 

  202. Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS. Neurology. 2000;54:813–7.

    Article  CAS  PubMed  Google Scholar 

  203. Frank JA, Richert N, Bash C, et al. Interferon-β-1b slows progression of atrophy in RRMS. Neurology. 2004;62:719–25.

    Article  CAS  PubMed  Google Scholar 

  204. Ransohoff RM. Natalizumab for multiple sclerosis. N Engl J Med. 2007;356(25):2622–9.

    Article  CAS  PubMed  Google Scholar 

  205. Polman CH, O’Connor PW, Hardova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.

    Article  CAS  PubMed  Google Scholar 

  206. Miller DH, Soon D, Fernando KT, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68(17):1390–401.

    Article  CAS  PubMed  Google Scholar 

  207. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23.

    Article  CAS  PubMed  Google Scholar 

  208. McGuigan C, Craner M, Guadagno J, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2016;87(2):117–25.

    CAS  PubMed  Google Scholar 

  209. Schwab N, Schneider-Hohendorf T, Pignolet B, et al. PML risk stratification using anti-JCV antibody index and L-selectin. Mult Scler. 2016;22:1048–60. doi:10.1177/135245851607651.

    Article  PubMed  Google Scholar 

  210. Calabresi PA, Giovannoni G, Confavreux C, et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology. 2007;69(14):1391–403.

    Article  CAS  PubMed  Google Scholar 

  211. Kappos L, Radue EW, Comi G, et al. Switching from natalizumab to fingolimod: a randomized, placebo-controlled study in RRMS. Neurology. 2015;85(1):29–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. N Engl J Med. 2012;366(4):339–47.

    Article  CAS  PubMed  Google Scholar 

  213. Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.

    Article  CAS  PubMed  Google Scholar 

  214. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.

    Article  CAS  PubMed  Google Scholar 

  215. O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.

    Article  PubMed  Google Scholar 

  216. Miller AE, O’Connor P, Wolinsky JS, et al. Pre-specified subgroup analyses of a placebo-controlled phase III trial (TEMSO) of oral teriflunomide in relapsing multiple sclerosis. Mult Scler. 2012;18(11):1625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. O’Connor P, Wolinsky J, Confavreux C, Comi G, Kappos L, Olsson T, et al. Extension of a phase III trial (TEMSO) of oral teriflunomide in multiple sclerosis with relapses: clinical and MRI data 5 years after initial randomisation. Mult Scler. 2011;17(Supp 17):S414. P924

    Google Scholar 

  218. Miller A, Kappos L, Comi G, et al. Teriflunomide efficacy and safety in patients with relapsing multiple sclerosis: results from TOWER, a second, pivotal, phase 3 placebo-controlled study (S01.004). Neurology. 2013;80(meeting abstracts 1):S01.004.

    Google Scholar 

  219. Confavreux C, O’Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  220. Vermersch P, Czlonkowska A, Grimaldi LM, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomized, controlled phase 3 trial. Mult Scler. 2014;20(6):705–16.

    Article  CAS  PubMed  Google Scholar 

  221. Genzyme Corporation. Aubagio prescribing information. Cambridge, MA; 2012.

    Google Scholar 

  222. Jung Henson L, Stüve O, Kieseier B, Benamor M, Benzerdjeb H. Pregnancy outcomes from the teriflunomide clinical development program: retrospective analysis of the teriflunomide clinical trial database. Neurology. 2013;80:1001–11.

    Google Scholar 

  223. Gold R, Linker RA, Stangel M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. Clin Immunol. 2012;142(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  224. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098Y1107.

    Article  CAS  Google Scholar 

  225. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087Y1097.

    Article  CAS  Google Scholar 

  226. Spencer CM, Crabtree-Hartman EC, Lehmann-Horn K, Cree BAC, Zamvil SS. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e76.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Dionne CA, Ganguly R, Camac A, Chaves C. Do oral disease modifying agents improve adherence to MS treatment? A comparison or oral and injectable drugs. CMSC 2015 Indianapolis; Abstract DX19.

    Google Scholar 

  228. Munsell M, Locklear JC, Phillips AL, Frean M, Menzin J. An assessment of adherence among MS patients newly initiating treatment with a self-injectable versus oral disease-modifying drug. CMSC 2015 Indianapolis; Abstract DX43.

    Google Scholar 

  229. Ko JJ, Nazareth TA, Friedman H, Navaratnam P, Herriott DA, Sasane R. Treatment discontinuation after initiation of oral disease-modifying therapies in patients with MS. CMSC 2015 Indianapolis; Abstract DX44.

    Google Scholar 

  230. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomized controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.

    Article  CAS  PubMed  Google Scholar 

  231. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomized controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.

    Article  CAS  PubMed  Google Scholar 

  232. Lemtrada® package insert: http://products.sanofi.us/lemtrada/lemtrada.pdf.

  233. Hartung HP, Gonsette R, Koenig N, et al. Mitoxantrone in progressive multiple sclerosis: a placebo controlled, double-blind, randomized, multicentre trial. Lancet. 2002;360:2018–25.

    Article  PubMed  Google Scholar 

  234. Ghalie RG, Edan G, Laurent M, et al. Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology. 2002;59:909–13.

    Article  CAS  PubMed  Google Scholar 

  235. European Study Group on Interferon β-1b in Secondary Progressive MS. Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis. Lancet. 1998;352:1491–7.

    Article  Google Scholar 

  236. Sedel F, Papeix C, Bellanger A, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2015;4:159–69.

    Article  PubMed  Google Scholar 

  237. Tourbah A, Frenay CL, Edan G, et al. Effect of MD10003 [high doses of biotin] in progressive multiple sclerosis: results of a pivotal phase III randomized double blind placebo controlled study. Neurology. 2015;84(14):Supplement PL2.002.

    Google Scholar 

  238. Hauser SL et al. B-cell depletion in rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  CAS  PubMed  Google Scholar 

  239. Hawker K, O’Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.

    Article  CAS  PubMed  Google Scholar 

  240. Hauser S. Phase III results in relapsing MS (OPERA I and OPERA II studies). ECTRIMS 2015; Barcelona; Abstract #190.

    Google Scholar 

  241. Montalban X. Phase II results of the ORATORIO study. ECTRIMS 2015; Barcelona; Abstract #228.

    Google Scholar 

  242. Kappos L et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomized, placebo-controlled, multicenter trial. Lancet. 2011;378(9805):1779–87.

    Article  CAS  PubMed  Google Scholar 

  243. Hauser SL, Bar-Or A, Comi G et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 2016; doi: 10.1056/NEJMoa1601277.

    Google Scholar 

  244. Montalban X, Hauser SL, Kappos L et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2016; doi: 10.1056/NEJMoa1606468.

    Google Scholar 

  245. Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, Kaufman M, Rose J, Greenberg S, Sweetser M, Riester K, O’Neill G, Elkins J. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015;373(15):1418–28.

    Article  CAS  PubMed  Google Scholar 

  246. An immunogenicity and pharmacokinetics study of BIIB019 (daclizumab high yield process) prefilled syringe in relapsing remitting multiple sclerosis (OBSERVE). www.clinicaltrials.gov, last updated Dec 23, 2015. Accessed 27 Feb 2016.

  247. Cadavid D, Hupperts R, Dulović et al. Correlation of brain volume and physical measures with cognitive function using baseline data from the anti-LINGO-1 SYNERGY trial in multiple sclerosis. ECTRIMS 2015 Barcelona; Abstract P629.

    Google Scholar 

  248. Tran JQ, Rana J, Barkhof F, et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm. 2014;1(2):e18.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wang T, Xiong JQ, Ren XB, Sun W. The role of Nogo-A in neuroregeneration: a review. Brain Res Bull. 2012;87:499–503.

    Article  CAS  PubMed  Google Scholar 

  250. Hvardova E. Positive proof of concept of AIN457, an antibody against interleukin-17A, in relapsing-remitting multiple sclerosis, in ECTRIMS. Lyons; 2012.

    Google Scholar 

  251. Miller DH et al. Firategrast for relapsing remitting multiple sclerosis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11:131–9.

    Article  CAS  PubMed  Google Scholar 

  252. Stuve O, Hartung HP, Freedman M, Li D, Hemmer B, Kappos L, Rieckmann P, Montalban X, Ziemssen T, Selmaj K. Phase 2 BOLD extension study efficacy results for siponimod (BAF312) in patients with relapsing–remitting multiple sclerosis. Mul Scler Relat Disord. 2014;3(6):754–5.

    Article  Google Scholar 

  253. Komiya T et al. Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin Exp Immunol. 2013;171:54–62.

    Article  CAS  PubMed  Google Scholar 

  254. Aisen ML. Justifying neurorehabilitation. (Editorial). Neurology. 1999;52:8.

    Article  CAS  PubMed  Google Scholar 

  255. Thompson A. Symptomatic management and rehabilitation in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001;71(Suppl 11):112–1127.

    Google Scholar 

  256. Heine M, van de Port I, Rietberg MB, van Wegen EE, Kwakkel G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015;9:CD009956.

    Google Scholar 

  257. Latimer-Cheung AE, Pilutti LA, Hicks AL, et al. The effects of exercise training on fitness, mobility, fatigue, and health related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Arch Phys Med Rehabil. 2013;94:1800–28.

    Article  PubMed  Google Scholar 

  258. Motl RW, Pilutti LA. The benefits of exercise training in multiple sclerosis. Nat Rev Neurol. 2012;8:487–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis A. Lizarraga MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lizarraga, A.A., Sheremata, W.A. (2017). Multiple Sclerosis: Clinical Features, Immunopathogenesis, and Treatment. In: Minagar, A., Alexander, J. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-51220-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51220-4_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-51218-1

  • Online ISBN: 978-3-319-51220-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics