Skip to main content

High Cycle Fatigue Investigations on High Strength Steels and Their GMA Welded Joints

  • Conference paper
  • First Online:
Vehicle and Automotive Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 2417 Accesses

Abstract

High cycle fatigue tests were performed on two strength categories of high strength steels, on quenched and tempered (S690 and S960) and thermomechanical (S960) types, on base materials and their gas metal arc welded joints, and on different matching conditions. The planning and optimization of welding technologies based on investigations under cyclic loading conditions were built upon a large number of investigations and statistical evaluation of the test results. Statistical approach was already applied during the preparation of the investigations, which have been allowed the expansion of the scope of the results and the increasing of their reliability. The article demonstrates and evaluates the results comparing with each other and with literary data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steel: a key partner in the European low-carbon economy of tomorrow. European steel technology platform (ESTEP), Brussels, March 2009, pp 1–16

    Google Scholar 

  2. European steel technology platform—Vision 2030. Report of the group of personalities. European Commission, Luxembourg, March 2004, pp 1–35. ISBN:92-894-5036-3

    Google Scholar 

  3. Miller WS et al (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:27–49

    Article  Google Scholar 

  4. AluReport—AMAG customer and market information. 03. 2012, www.amag.at

  5. Ghassemieh E (2011) Materials in automotive application. In: Chiaberge M (ed) New trends and developments in automotive industry InTech, pp 365–394. www.intechopen.com. (ISBN 978-953-307-999-8)

  6. Plastics and polymer composites technology roadmap for automotive markets. American Chemistry Council, March 2014, pp. 1–59. www.americanchemistry.com

  7. Metals Handbook, Volume 19. Fatigue and Fracture, ASM International, 1996

    Google Scholar 

  8. Balogh A, Dobosy Á, Frigyik G, Gáspár M, Kuzsella L, Lukács J, Meilinger Á, Nagy Gy, Pósalaky D, Prém L, Török I (2015) Hegeszthetőség és a hegesztett kötések tulajdonságai: Kutatások járműipari acél és alumíniumötvözet anyagokon, (Szerk.) Balogh A., Lukács J., Török I., Miskolc (Hungary), p 324. (ISBN 978-963-358-081-3)

    Google Scholar 

  9. Dobosy Á, Nagy Gy (2015) Különböző folyáshatárú acélok és hegesztett kötéseinek kisciklusú fárasztása. XXII. OGÉT Nemzetközi Gépészeti Találkozó, Nagyszeben, 2014. 04. 24-27, pp 98–101, 2014 (ISSN 2068-1267)

    Google Scholar 

  10. Meilinger Á, Török I (2016) Lineáris dörzshegesztéssel készült kötések jellemzői kisciklusú fárasztó igénybevétel esetén, GÉP LXVII. évf. 1. szám, pp 63–71

    Google Scholar 

  11. Lukács J, Meilinger Á, Pósalaky D Fatigue curves for aluminium alloys and their welded joints used in automotive industry. Mater Sci Forum (In Press)

    Google Scholar 

  12. Lukács J, Nagy Gy, Harmati I, Koritárné FR, Kuzsella LnéKZs Szemelvények a mérnöki szerkezetek integritása témaköréből, (Szerk.) Lukács J, Miskolci Egyetem Miskolc (Hungary), pp 334, 2012 (ISBN 978-963-358-000-4)

    Google Scholar 

  13. Zsáry Á (1965) Méretezés kifáradásra a gépészetben. Műszaki Könyvkiadó, Budapest

    Google Scholar 

  14. Koncsik Zs, Lukács J (2013) Design curves for high-cycle fatigue loaded structural elements. Mater Sci Forum 729:135–144

    Article  Google Scholar 

  15. MSZ-EN 1993-1-1:2009: EUROCODE 3: Acélszerkezetek tervezése. 1-1 rész: Általános és az épületekre vonatkozó szabályok

    Google Scholar 

  16. Stephens, RI, Fatemi A, Stephens RR, Fuchs HO (2001) Metal fatigue in engineering. Wiley (ISBN 0-471-51059-9)

    Google Scholar 

  17. BS 7910:2013 + A1:2015: Guide to methods for assessing the acceptability of flaws in metallic structures the British Standards Institution 2015. Published by BSI Standards Limited 2015 (ISBN 978 0 580 89564 7)

    Google Scholar 

  18. Barsom JM, Rolfe ST (1999) Fracture and fatigue control in structures: applications of fracture mechanics. ASTM Manual Series: MNL41. American Society for Testing and Materials, West Consthohocken, PA. (ISBN 0-8031-2082-6)

    Google Scholar 

  19. Lee YL, Pan J, Hathaway R, Barkey M (2005) Fatigue testing and analysis. Theory and Practice. Elsevier Butterworth-Heinemann. (ISBN-10 0-7506-7719-8)

    Google Scholar 

  20. Dobosy Á, Gáspár M (213) Welding of quenched and tempered high strength steels with heavy plate thickness. In: Proceedings 27th microCAD, international scientific conference, Miskolc (Hungary), Paper M7. (ISBN 978-963-358-018)

    Google Scholar 

  21. Gáspár M, Balogh A (2013) GMAW experiments for advanced (Q + T) high strength steels. Prod Process Syst 6(1):9–24

    Google Scholar 

  22. Balogh A, Gáspár M (2014) A matching kérdéskör: hozaganyagválasztás a konvencionális és korszerű nagyszilárdságú acélok hegesztéséhez. Hegesztéstechnika 25(3):75–80

    Google Scholar 

  23. Gáspár M, Balogh A (2014) Behaviour of mismatch welded joints when undermatching filler metal is used. Prod Process Syst 7(1):63–76

    Google Scholar 

  24. Nakazawa H, Kodama S (1987) Statistical S-N testing method with 14 specimens: JSME standard method for determination of S-N curves. In: Statistical research on fatigue and fracture. Current Japanese materials research. In: Tanaka T, Nishijima S, Ichikawa M (eds) Elsevier applied science and the society of materials science, Japan, vol. 2, pp 59–69 (ISBN 1-85166-092-5)

    Google Scholar 

  25. Pijpers RJM, Kolstein MH, Romeijn A, Bijlaard FSK (2007) Fatigue experiments on very high strength steel base material and transverse butt welds. Adv Steel Constr 5(1):14–32

    Google Scholar 

  26. Stemne D, Narström T, Hrnjez B (2010) Welding handbook. A guide to better welding of Hardox and Weldox, 1st edn. SSAB Oxelösund AB. (ISBN 978-91-978573-0-7)

    Google Scholar 

  27. Hamme U, Hauser J, Kern A, Schriever U (2000) Einsatz hochfester Baustähle im Mobilkranbau. Stahlbau 69(4):295–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ádám Dobosy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dobosy, Á., Lukács, J., Gáspár, M. (2017). High Cycle Fatigue Investigations on High Strength Steels and Their GMA Welded Joints. In: Jármai, K., Bolló, B. (eds) Vehicle and Automotive Engineering. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-51189-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51189-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51188-7

  • Online ISBN: 978-3-319-51189-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics