An Overview of Autonomous Intelligent Vehicle Systems

  • Daniel TokodyEmail author
  • Imre János Mezei
  • György Schuster
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Vehicles, whose functions are enriched with attributes to increase safety, environmental awareness, effectiveness, comfort level and prestige, so that they can play a key role in creating optimal mobility, are now being invented, planned and manufactured for general use. Throughout the full spectrum of transport, vehicles will soon exempt people from the routine of driving. If people do not need to drive their cars, will their driving skills deteriorate or will they entirely fail to develop this skill later on? Is this threatening us in the near future? What are the latest research results and regulations on autonomous vehicles? What are the actual advantages of vehicle automation? We are trying to find the answers to these questions in our article, while analysing and systematizing information from the national and international literature on the development of intelligent vehicles by examining the interaction between various ground transport vehicles, and the related developments on the subject. Our goal is to create automatic intelligent vehicle systems, within the concept of intelligent infrastructures and smart cities. The paper provides an FMEA analysis of intelligent vehicles. To decrease the explored deficiencies in the present system, applicable proposals are formulated about development areas, such as forming a communication between vehicular traffic and railed vehicles. We feel that such developments are important steps in increasing traffic safety, and we regard them as elements of intelligent transport.


Automation Self-driving cars Levels of automation Automatic train operation Grades of automation Intelligent vehicles Smart sustainable city Intelligent infrastructure V2X 



The research on which the publication is based has been carried out within the framework of the project entitled “The Development of Intelligent Railway Information and Safety Systems”. This research has been realised by using the resources of the National Talent Programme, Grant Scheme for the Nation’s Young Talents (Application number: NTP-NFTÖ-16-0582) and the support of the Human Resource Support Office and the Ministry of Human Resources.


  1. 1.
    Statistical Yearbook of Traffic Accidents (2014) [Online]. Accessed 10 Aug 2016
  2. 2.
    Directive 2010/40/EU, Intelligent Transport Systems in the field of road transport, as well as framework for interfaces with other transport modes [Online]. Accessed 10 Aug 2016
  3. 3.
    Mester Gy (2010) Service robots, VMTT Konferencia, Novi Sad, Serbia. ISBN 978-86-88077-02-6 (in Hungarian)Google Scholar
  4. 4.
    World’s first electric road opens in Sweden [Online]. Accessed 10 Aug 2016
  5. 5.
    Előd F (2016) According to Orbán and Varga the autonomous car-manufacturing in the future of the Hungarian industry [Online]. Accessed 12 Aug 2016 (in Hungarian)
  6. 6.
    Opinion of the European Economic and Social Committee on ‘The effects of digitalisation on the services sector and employment in relation to industrial change’(exploratory opinion) (2016/C 013/24) [Online]. Accessed 12 Aug 2016
  7. 7.
    Communication from the commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions Digitising European Industry Reaping the full benefits of a Digital Single Market {SWD(2016) 110 final}, Brussels [Online]. Accessed 12 Aug 2016
  8. 8.
    Commission staff working document, Online Platforms Accompanying the document Communication on Online Platforms and the Digital Single Market {COM(2016) 288 final}, Brussels [Online]. Accessed 12 Aug 2016
  9. 9.
    Urmson C, Whittaker W (2008) Self-driving cars and the urban challenge. IEEE Intell Syst 23(2):66–68. doi: 10.1109/MIS.2008.34. ISSN 1541-1672, URL:
  10. 10.
    Kim T, Jeong HY (2010) Crash probability and error rates for head-on collisions based on stochastic analyses. IEEE Trans Intell Transp Syst 11(4):896–904. doi: 10.1109/TITS.2010.2053536. ISSN 1524-9050.
  11. 11.
    Sugimoto M et al (2000) Realization of head-on collision warning system at intersections-DSSS: driving safety support systems. In: Intelligent vehicles symposium, 2000. IV 2000. Proceedings of the IEEE, Dearborn, MI, 2000, pp 731–735. doi: 10.1109/IVS.2000.898436. ISBN 0-7803-6363-9.
  12. 12.
    El-Shamy EF (2010) Head-on collisions of two electrostatic solitary waves in electron–positron–ion plasmas. IEEE Trans Plasma Sci 38(4):909–914. doi: 10.1109/TPS.2010.2042465. ISSN 0093-3813.
  13. 13.
    Wang J et al (2013) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12. doi: 10.1109/TITS.2012.2205143. ISSN 1524-9050.
  14. 14.
    Kelsch J (2016) Human-Vehicle Integration in EU-AdaptIVe, ITS World Congress, Bordeaux, France [Online]. Accessed 25 Aug 2016
  15. 15.
    Weber T (2016) ECO, spectrum management: activities in CEPT (European Spectrum Regulation) for applications in transport and traffic telematics including sensors, trends in automotive radar and impact on system architecture workshop, March 14–17. Munich, GermanyGoogle Scholar
  16. 16.
    SAE International (2016) Automated driving levels of driving automation are defined in New Sae International Standard J3016 [Online]. Accessed 25 Aug 2016
  17. 17.
    Venkateswaran KG et al (2015) Impact of automation on the capacity of a mainline railway: a preliminary hypothesis and methodology. In: 2015 IEEE 18th international conference on intelligent transportation systems, Las Palmas, 2015, pp 2097–2102. doi: 10.1109/ITSC.2015.339. ISSN 2153-0009.
  18. 18.
    Wang Y et al (2008) A novel automatic train operation algorithm based on iterative learning control theory. In: IEEE international conference on service operations and logistics, and informatics, 2008. IEEE/SOLI 2008, Beijing, pp 1766–1770. doi: 10.1109/SOLI.2008.4682815. ISBN 978-1-4244-2012-4.
  19. 19.
    Dominguez M et al (2012) Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles. IEEE Trans Autom Sci Eng 9(3):496–504. doi: 10.1109/TASE.2012.2201148. ISSN 1545-5955.
  20. 20.
    Zuo J et al (2010) Feedback control of pneumatic brake of urban railway train under ATO mode. In: 2010 international conference on E-Product E-Service and E-Entertainment (ICEEE), Henan, 2010, pp 1–4. doi: 10.1109/ICEEE.2010.5660567. ISBN 978-1-4244-7159-1.
  21. 21.
    Chang CS, Sim SS (1997) Optimising train movements through coast control using genetic algorithms. In: IEE proceedings—electric power applications, vol 144, no 1, pp 65–73. doi: 10.1049/ip-epa:19970797. ISSN 1350-2352.
  22. 22.
    Liu J et al (2013) An analysis of BeiDou Navigation Satellite System (BDS) based positioning for train collision early warning. In: Intelligent vehicles symposium (IV), 2013 IEEE, Gold Coast, QLD, 2013, pp 1065–1070. doi: 10.1109/IVS.2013.6629607. ISSN 1931-0587.
  23. 23.
    Skillingberg M, Green J (2007) Aluminum applications in the rail industry. Light Metal Age-Chicago 65(5):8Google Scholar
  24. 24.
    Jun HK, Kim JH (2007) Life cycle cost modeling for railway vehicle. In: ICEMS. international conference on electrical machines and systems, Seoul, 2007, pp 1989–1994. ISBN 978-89-86510-07-2.
  25. 25.
    Baumgartner JP (2001) Prices and costs in the railway sector. Laboratoire d’Intermodalité des Tansports Et de Planification, École Polytechnique Fédérale De LausanneGoogle Scholar
  26. 26.
    Dominguez M et al (2012) Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles. IEEE Trans Autom Sci Eng 9(3):496–504. doi: 10.1109/TASE.2012.2201148. ISSN 1545-5955.
  27. 27.
    Zhu L et al (2012) Handoff performance improvements in MIMO-enabled communication-based train control systems. IEEE Trans Intell Transp Syst 13(2):582–593. doi: 10.1109/TITS.2012.2188288. ISSN 1524-9050.
  28. 28.
    Darai L (2013) Metrók, metró biztonsága, oktatási vázlat, slide show [Online]. Accessed 10 Jan 2016
  29. 29.
    Oh S, Yoon Y, Kim Y (2012) Automatic train protection simulation for radio-based train control system. In: 2012 international conference on information science and applications, Suwon, 2012, pp 1–4. doi: 10.1109/ICISA.2012.6220965. ISBN 978-1-4673-1402-2.
  30. 30.
    International association of public transport: metro automation facts, figures and trends, p 1, 2012, Brüsszel [Online]. Accessed 26 Aug 2016
  31. 31.
    Rail automation—reaching out across Europe, 6th August 2016 [Online]. Accessed 26 Aug 2016
  32. 32.
    Tokodi D, Schuster G, Ihász J (2014) SMART Rail technológiák lehetőségei, az intelligens vasúti hálózatok kialakításának kérdései. Vezetékek Világa: magyar vasúttechnikai szemle 19(2):11–15Google Scholar
  33. 33.
    Tokody D, Schuster Gy (2015) I2—Intelligent Infrastructure. In: Schmidt P et al (ed) Reviewed proceedings fifth international scientific videoconference of scientists and PhD. students or candidates: trends and innovations in E-business, education and security, 129 pp, Bratislava, Szlovákia. University of Economics in Bratislava, pp 121–128. ISBN 978-80-225-4191-6Google Scholar
  34. 34.
    International Telecommunication Union, smart sustainable cities: an analysis of definitions, p 21 [Online]. Accessed 21 Dec 2015
  35. 35.
    Tokody D, Holicza P, Schuster G (2016) The smart mobility aspects of intelligent railway. In: 2016 IEEE 11th international symposium on applied computational intelligence and informatics (SACI), pp 323–326. IEEEGoogle Scholar
  36. 36.
    Trebuňa F et al (2012) Modelling of mechanical and mechatronics systems intelligent vehicles as the robotic applications. Procedia Eng 48:105–114. ISSN 1877-7058.
  37. 37.
    Milanés V et al (2010) Clavileño: Evolution of an autonomous car. In: 2010 13th international IEEE conference on intelligent transportation systems (ITSC), Funchal, 2010, pp 1129–1134. doi: 10.1109/ITSC.2010.5624971. ISSN 2153-0009.
  38. 38.
    Jo K, Sunwoo M (2014) Generation of a precise roadway map for autonomous cars. IEEE Trans Intell Transp Syst 15(3):925–937. doi: 10.1109/TITS.2013.2291395. ISSN 1524-9050.
  39. 39.
    Pozna C, Antonya C (2016) Issues about autonomous cars. In: 2016 IEEE 11th international symposium on applied computational intelligence and informatics (SACI), Timisoara, Romania, 2016, pp 13–18. doi: 10.1109/SACI.2016.7507360. ISBN 978-1-5090-2379-0.
  40. 40.
    Uhlemann E (2015) Introducing connected vehicles [connected vehicles]. IEEE Vehicular Technol Mag 10(1):23–31. doi: 10.1109/MVT.2015.2390920, ISSN 1556-6072.
  41. 41.
    Kaempchen N et al (2009) Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Trans Intell Transp Syst 10(4):678–687. doi: 10.1109/TITS.2009.2026452. ISSN 1524-9050.
  42. 42.
    Tokody D (2016) Smart mobility. In: Enikő B (ed) Proceedings of the XXI-th international scientific conference of young engineers, 452 pp, Kolozsvár, Románia. Erdélyi Múzeum-Egyesület (EME), pp 401–404Google Scholar
  43. 43.
    Sukuvaara T, Nurmi P (2009) Wireless traffic service platform for combined vehicle-to-vehicle and vehicle-to-infrastructure communications. IEEE Wireless Commun 16(6):54–61. doi: 10.1109/MWC.2009.5361179. ISSN 1536-1284.
  44. 44.
    Harding J et al (2014) Vehicle-to-vehicle communications: readiness of V2V technology for application (Report No. DOT HS 812 014). National Highway Traffic Safety Administration, Washington, DCGoogle Scholar
  45. 45.
    Seo H et al (2016) LTE evolution for vehicle-to-everything services. IEEE Commun Mag 54(6):22–28. doi: 10.1109/MCOM.2016.7497762. ISSN 0163-6804.
  46. 46.
    Tokody D, Maros D, Schuster Gy, Tiszavölgyi Zs. (2016) Communication-based intelligent railway—implementation of GSM-R system in Hungary. In: 2016 IEEE 14th international symposium on applied machine intelligence and informatics (SAMI), Herlany, pp 99–104. doi: 10.1109/SAMI.2016.7422989
  47. 47.
    Hank P et al (2013) Automotive ethernet: in-vehicle networking and smart mobility. In: Design, automation & test in Europe conference & exhibition (DATE), Grenoble, France, 2013, pp 1735–1739. doi: 10.7873/DATE.2013.349. ISSN 1530-1591.
  48. 48.
    Cvijić B et al (2016) Cloud based web application supporting vehicle toll payment system. In: 2016 5th Mediterranean conference on embedded computing (MECO), Bar, Montenegro, 2016, pp 489–492. doi: 10.1109/MECO.2016.7525700. ISBN 978-1-5090-2220-5.
  49. 49.
    Ipakchi A, Albuyeh F (2009) Grid of the future. IEEE Power Energy Mag 7(2):52–62. doi: 10.1109/MPE.2008.931384. ISSN 1540-7977.
  50. 50.
    Deilami S et al (2011) Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans Smart Grid 2(3):456–467. doi: 10.1109/TSG.2011.2159816. ISSN 1949-3053.
  51. 51.
    Sortomme E et al (2011) Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans Smart Grid 2(1):198–205. doi: 10.1109/TSG.2010.2090913. ISSN 1949-3053.
  52. 52.
    Tokody D, Schuster G (2016) Driving forces behind smart city implementations—The Next Smart Revolution, manuscriptGoogle Scholar
  53. 53.
    Prime Faraday Technology Watch—January 2002: an introduction to MEMS. ISBN 1-84402-020-7.
  54. 54.
    Tokody D, Papp J, Schuster Gy (2015) The challenges of the intelligent railway network implementation: Initial thoughts from Hungary. In: Gogolák L, Fürstner I (eds) Proceedings of the 3rd international conference and workshop mechatronics in practice and education—MECHEDU 2015, Szabadka, Szerbia, 2015.05.14–2015.05.16. Subotica Technical College of Applied Sciences, pp 179–185. ISBN 978-86-918815-0-4Google Scholar
  55. 55.
    Mesterséges Intelligencia Almanach [Online]. Accessed 21 Dec 2015
  56. 56.
    Blum JJ et al (2004) Challenges of intervehicle ad hoc networks. IEEE Trans Intell Transp Syst 5(4):347–351. doi: 10.1109/TITS.2004.838218. ISSN 1524-9050.
  57. 57.
    Lytrivis P (2015) A holistic approach for automated transport systems. In: iMobility forum plenary meeting, 21 October 2015, BrusselsGoogle Scholar
  58. 58.
    Cohen B (2015) The smartest cities in the world 2015: methodology [Online]. Accessed 20 Dec 2015
  59. 59.
    Siergiejczyk M (2015) Communication architecture in the chosen telematics transport systems. [Online]. Accessed 21 Dec 2015

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel Tokody
    • 1
    Email author
  • Imre János Mezei
    • 1
  • György Schuster
    • 1
  1. 1.Doctoral School on Safety and Security SciencesÓbuda UniversityBudapestHungary

Personalised recommendations