Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 66))

  • 4758 Accesses

Abstract

Oscillations at frequencies of approximately 12–30 ​Hz — roughly half the gamma frequency — are called beta oscillations or beta rhythms in neuroscience. Many experimental studies have linked beta oscillations to motor function. They are, in particular, more pronounced during holding periods, and attenuated during voluntary movement. Engel and Fries [44] have hypothesized that more generally, beta oscillations may signal the expectation or intent of maintaining a sensorimotor or cognitive status quo. (The sensorimotor areas of the brain are those that combine sensory and motor functions.) This fits with the observation that in patients suffering from Parkinson’s disease and the associated slowed movement (bradykinesia), power and coherence of beta oscillations in the basal ganglia are abnormally high, and are attenuated by levodopa, a drug commonly used to treat Parkinson’s disease [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. P. Brown, A. Oliviero, P. Mazzone, A. Insola, P. Tonali, and V. D. Lazzaro, Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease, J. Neurosci., 21 (2001), pp. 1033–1038.

    Google Scholar 

  2. S. J. Cruikshank and N. M. Weinberger, Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review, Brain Research Reviews, 22 (1996), pp. 191–228.

    Article  Google Scholar 

  3. A. K. Engel and P. Fries, Beta-band oscillations–signalling the status quo?, Curr. Opin. Neurobiol., 20 (2010), pp. 156–165.

    Article  Google Scholar 

  4. H. H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, 275 (1997), pp. 213–215.

    Article  Google Scholar 

  5. D. O. Hebb, The Organization of Behavior, John Wiley, New York, 1949.

    Google Scholar 

  6. M. Olufsen, M. Whittington, M. Camperi, and N. Kopell, New functions for the gamma rhythm: Population tuning and preprocessing for the beta rhythm, J. Comput. Neurosci., 14 (2003), pp. 33–54.

    Article  Google Scholar 

  7. A. K. Roopun, S. J. Middleton, M. O. Cunningham, F. E. N. Lebeau, A. Bibbig, M. A. Whittington, and R. D. Traub, A beta2-frequency (20-30 Hz) oscillation in nonsynaptic networks of somatosensory cortex, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 15646–15650.

    Article  Google Scholar 

  8. X.-J. Wang, D. Golomb, and J. Rinzel, Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms, Proc. Natl. Acad. Sci. USA, 2 (1995), pp. 5577–5581.

    Article  Google Scholar 

  9. M. A. Whittington, R. D. Traub, H. J. Faulkner, I. M. Stanford, and J. G. Jefferys, Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations, Proc. Natl. Acad. Sci. USA, 94 (1997), pp. 12198–12203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 624 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Börgers, C. (2017). Beta Rhythms. In: An Introduction to Modeling Neuronal Dynamics. Texts in Applied Mathematics, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-51171-9_33

Download citation

Publish with us

Policies and ethics