Skip to main content

Chemical Synapses

  • Chapter
  • First Online:
An Introduction to Modeling Neuronal Dynamics

Part of the book series: Texts in Applied Mathematics ((TAM,volume 66))

  • 4829 Accesses

Abstract

We now think about neuronal communication via (chemical) synapses; see Section 1.1 for a brief general explanation of what this means. In this chapter, we describe how to model chemical synapses in the context of differential equations models of neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Bartos, I. Vida, M. Frotscher, J. R. Geiger, and P. Jonas, Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network, J. Neurosci., 21 (2001), pp. 2687–2698.

    Google Scholar 

  2. C. Börgers and A. R. Nectow, Exponential time differencing for Hodgkin-Huxley-like ODEs, SIAM Journal on Scientific Computing, 35 (2013), pp. B623–B643.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Börgers and B. Walker, Toggling between gamma-frequency activity and suppression of cell assemblies, Frontiers in Computational Neuroscience, 7, doi: 10.3389/fncom.2013.00033 (2013).

    Google Scholar 

  4. A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, Kinetic models of synaptic transmission, in Methods in Neuronal Modeling, C. Koch and I. Segev, eds., Cambridge, MA, 1998, MIT Press, pp. 1–26.

    Google Scholar 

  5. G. B. Ermentrout and, Fine structure of neural spiking and synchronization in the presence of conduction delay, Proc. Natl. Acad. Sci. USA, 95 (1998), pp. 1259–1264.

    Google Scholar 

  6. M. J. Gillies, R. D. Traub, F. E. N. LeBeau, C. H. Davies, T. Gloveli, E. H. Buhl, and M. A. Whittington, A model of atropine-resistant theta oscillations in rat hippocampal area CA1, J. Physiol., 543 (2002), pp. 779–793.

    Article  Google Scholar 

  7. N. Hájos and I. Mody, Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells, J. Neurosci., 17 (1997), pp. 8427–8442.

    Google Scholar 

  8. C. E. Jahr and C. F. Stevens, Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics, J. Neurosci., 10 (1990), pp. 3178–3182.

    Google Scholar 

  9. I. C. Kleppe and H. P. Robinson, Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors, Biophys. J., 77 (1999), pp. 1418–1427.

    Article  Google Scholar 

  10. U. Kraushaar and P. Jonas, Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse, J. Neurosci., 20 (2000), pp. 5594–5607.

    Google Scholar 

  11. T. M. Pham, S. Nurse, and J. C. Lacaille, Distinct GABA B actions via synaptic and extrasynaptic receptors in rat hippocampus in vitro, J. Neurophysiol., 80 (1998), pp. 297–308.

    Google Scholar 

  12. H. G. Rotstein, D. D. Pervouchine, C. D. Acker, M. J. Gillies, J. A. White, E. H. Buhl, M. A. Whittington, and N. Kopell, Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network, J. Neurophysiol., 94 (2005), pp. 1509–1518.

    Article  Google Scholar 

  13. P. A. Salin and D. A. Prince, Spontaneous GABA A receptor-mediated inhibitory currents in adult rat somatosensory cortex, J. Neurophysiol., 75 (1996), pp. 1573–1588.

    Google Scholar 

  14. T. P. Sheehan, R. A. Chambers, and D. S. Russell, Regulation of affect by the lateral septum: implications for neuropsychiatry, Brain Research Reviews, 46 (2004), pp. 71–117.

    Article  Google Scholar 

  15. G. Tamás, E. H. Buhl, and P. Somogyi, Massive autaptic self-innervation of GABAergic neurons in cat visual cortex, J. Neurophysiol., 17 (1997), pp. 6352–6364.

    Google Scholar 

  16. X. J. Wang, Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory, J. Neurosci., 19 (1999), pp. 9587–9603.

    Google Scholar 

  17. J. A. White, M. I. Banks, R. A. Pearce, and N. Kopell, Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 8128–8133.

    Article  Google Scholar 

  18. M. P. Y. Yaari, Kinetic properties of NMDA receptor-mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones, J. Physiol., 465 (1993), pp. 223–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 194 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Börgers, C. (2017). Chemical Synapses. In: An Introduction to Modeling Neuronal Dynamics. Texts in Applied Mathematics, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-51171-9_20

Download citation

Publish with us

Policies and ethics