Skip to main content

Fundamentals of Reactive Power in AC Power Systems

  • Chapter
  • First Online:
Reactive Power Control in AC Power Systems

Part of the book series: Power Systems ((POWSYS))

Abstract

The fundamentals of reactive power in AC power systems are discussed in the second chapter. The chapter presents basic theory of AC circuits including two-ports linear elements, basic equations and definition of powers in AC circuits. The phasor diagrams and power measurement techniques in AC networks are also presented. The chapter also investigates the effects of reactive power as well as power factor compensation in consumers. The end part of the chapter is related to minimum active and reactive absorbed power in linear AC circuits and also non-sinusoidal conditions. All of the parts include some practical examples and case studies. The chapter is closed with a large list of bibliographic references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Alexandre, M.O. Sadiku, Fundamentals of Electric Circuits, McGraw-Hill, 5th Edition, 2012.

    Google Scholar 

  2. R.C. Dorf, J.A. Svoboda, Introduction to Electric Circuits, Wiley, 8th Edition, 2010.

    Google Scholar 

  3. W. Hayt, J. Kemmerly, S. Durbin, Engineering Circuit Analysis, McGraw-Hill, 8th Edition, 2011.

    Google Scholar 

  4. J.W. Nilsson, S. Riedel, Electric Circuits Prentice Hall, 9th Edition, 2010.

    Google Scholar 

  5. M. Nahvi, J. Edminster, Schaum’s Outline of Electric Circuits, McGraw-Hill, 5th Edition, 2011.

    Google Scholar 

  6. A.E. Emanuel, Power Definitions and the Physical Mechanism of Power Flow, John Wiley & Sons, 2011.

    Google Scholar 

  7. C. Sankaran, Power Quality, New York: CRC Press, 2002.

    Google Scholar 

  8. F.C. de la Rosa, Harmonics and Power Systems, New York: Taylor & Francis, 2006.

    Google Scholar 

  9. A. Baggini, Handbook of Power Quality, John Wiley & Sons, 2008.

    Google Scholar 

  10. R.C. Dugan, M.F. Mc Granaghan, S. Santoso, W.H. Beaty, Electrical Power Systems Quality, McGraw Hill Professional, 2012.

    Google Scholar 

  11. A. Kusko, M. Thomson, Power Quality in Electrical Systems, McGraw Hill Professional, 2007.

    Google Scholar 

  12. E.F. Fuchs, M.A.S. Masoum, Power Quality in Power Systems and Electrical Machines, Elsevier Inc., 2008.

    Google Scholar 

  13. IEEE Standard 1159, IEEE Recomandated Practices for Monitoring Electric Power Quality, 1995.

    Google Scholar 

  14. EN Standard 50160, Characteristics of Voltage at a Network User’s Supply Terminals: Limits and Values, 2011.

    Google Scholar 

  15. W. Hofmann, J. Schlabbach, W. Just, Reactive Power Compensation: A Practical Guide, John Wiley & Sons, 2012.

    Google Scholar 

  16. ABB, 2008 Power Factor Correction and Harmonic Filtering in Electrical Plants, Technical Application Paper.

    Google Scholar 

  17. W. Hofmann, W. Just, 2003, Reactive Current Compensation in the Operating Practice: Design, Energy Saving, Harmonics, Voltage Quality, VDE Verlag, 4, Over Edition.

    Google Scholar 

  18. Schneider Electric, 2001, Power Quality, Cahier Technique no., 1999.

    Google Scholar 

  19. G.G. Seip, Electrical Installations Handbook - Siemens, Wiley, 3rd Edition, 2000.

    Google Scholar 

  20. J.M. Broust, Industrial Electrical Equipment and Installations - Conception, Coordination, Implementation, Maintenance, Editor, Dunod, 2013.

    Google Scholar 

  21. K. Tkotz, (Management of the work group), Electrical Engineering, European Teaching, 28. Revised and Expanded Edition, 2012.

    Google Scholar 

  22. B.D. Jenkins, M. Coates, Electrical Installation Calculations, Blackwell Science, 3rd Edition, 2003.

    Google Scholar 

  23. C. Linsley, Advanced Electrical Installation Work, Newnes Publishing House, 2008.

    Google Scholar 

  24. A.J. Watkins, C. Kitcher, Electrical Installation Calculations, vol. 1+2, Elsevier and Newnes Publishing, 6th Edition, 2006.

    Google Scholar 

  25. S. Christopher, Electrical Installation, Nelson Thornes Ltd., 3rd Edition, 2005.

    Google Scholar 

  26. S. Gunter, Electrical Installations Handbook, John Wiley and Sons- VCH; 3rd Edition, 2000.

    Google Scholar 

  27. B. Atkinson, R. Lovegrove, Electrical Installation Designs, Wiley, 4th Edition, 2013.

    Google Scholar 

  28. I. Kasikci, Analysis and Design of Low-Voltage Power Systems: An Engineer’s Field Guide, John Wiley and Sons – VCH, 1st Edition, 2004.

    Google Scholar 

  29. Schneider Electric, Electric Installation Guide, 2013.

    Google Scholar 

  30. J. Schonek, Y. Nebon, LV Protection Devices and Variable Speed Drives (Frequency Converters), Schneider Electric, Cahier Technique no. 204, 2002.

    Google Scholar 

  31. D. Clenet, Electronic starters and variable speed drives, Schneider Electric, Cahier Technique no. 208, 2003.

    Google Scholar 

  32. E. Aucheron, Electric Motors and How to Improve their Control and Protection, Schneider Electric, Cahier Technique no. 207, 2004.

    Google Scholar 

  33. G. Baurand, V. Moliton, The protection of LV motors, Schneider Electric, Cahier Technique no. 211, 2007.

    Google Scholar 

  34. ABB, Three-Phase Asynchronous Motors - Generalities and ABB Proposals for Coordination of Protective Devices, Technical Application Papers, vol. 7, 2004.

    Google Scholar 

  35. E. Bettega, J.N. Fiorina, Active Harmonic Conditioners and Unity Power Factor Rectifiers, Schneider Electric, Cahier Technique no. 183, 1999.

    Google Scholar 

  36. J.N. Fiorina, Inverters and Harmonics (Case Studies of Non-Linear Loads, Schneider Electric, Cahier Technique no. 159, 1993.

    Google Scholar 

  37. Ph. Ferraci, Power Quality, Schneider Electric, Cahier Technique no. 199, 2001.

    Google Scholar 

  38. C. Collombet, J.M. Lupin, J. Schonek, Harmonic Disturbances in Networks, and their Treatment, Schneider Electric, Cahier Technique no. 152, 1999.

    Google Scholar 

  39. R. Calvas, Electrical Disturbances in LV, Schneider Electric, Cahier Technique no. 141, 2000.

    Google Scholar 

  40. J. Schonek, The Singularities of the Third Harmonic, Schneider Electric, Cahier Technique no. 202, 2001.

    Google Scholar 

  41. R.C. Dewar, Information Theory Explanation of the Fluctuation Theorem, Maximum Entropy Production, and Self-Organization Criticality in Non-Equilibrium Stationary States, Journal of Physics, 2003, A36, 631–641.

    Google Scholar 

  42. H. Ozawa, A. Ohmura, R.D. Lorenz, T. Pujol, The Second Law of Thermodynamics and the Global Climate System - A Review of the Maximum Entropy Production Principle, Revue of Geophysics, 2003, 41, 1018.

    Google Scholar 

  43. I. Rodriguez Iturbe, A. Rinaldo, Fractal River Basins: Chance and Self-Organization, New York, USA: Cambridge University Press, 1997.

    Google Scholar 

  44. G.H. North, R.F. Cahalan, J.A. Coakley, Energy Balance Climate Model, Revue of Geophysics, 1981, 19, 91–121.

    Google Scholar 

  45. C.D. Rodgers, Minimum Entropy Exchange Principle-Reply, Journal of Meteorology Society, 1976, 102, 455–7.

    Google Scholar 

  46. J. Clemente Gallardo, J.M.A. Scherpen, Relating Lagrangian and Hamiltonian Formalism of LC Circuits, IEEE Transactions on Circuits and Systems, 2003, 50, no. 10, 1359–1363.

    Google Scholar 

  47. E.N. Lorenz, Generation of Available Potential Energy and the Intensity of the General Circulation, Oxford, UK: Pergamon Press, 1960, 86–92.

    Google Scholar 

  48. A. Kleidon, Testing the Effect of Life on Earth’s Functioning: How Gaian is the Earth System?, Clim Change, 2002, 52, 383–389.

    Google Scholar 

  49. A. Kleidon, K. Fraedrich, T. Kunz, F. Lunkeit, The Atmospheric Circulation and States of Maximum Entropy Production, Geophys. Res. Lett., 2003, 30, 2223.

    Google Scholar 

  50. A. Bejan, Shape and Structure from Engineering to Nature, Cambridge, UK: Cambridge University Press, 2000.

    Google Scholar 

  51. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. I and II, 3rd Ed., New York, USA: Dover Publications, Inc., 1954.

    Google Scholar 

  52. W. Millar, Some General Theorems for Nonlinear Systems Possessing Resistance, Phil. Mag., 1951, ser. 7, vol. 42, no. 333, 1150–1160.

    Google Scholar 

  53. T.E. Stern, On the Equations of Nonlinear Networks, IEEE Transactions on Circuits Theory, 1996, vol. CT-13, no. 1, 74–81.

    Google Scholar 

  54. P. Jr. Penfield, R. Spence, S. Duinker, Tellegen’s Theorem and Electrical Networks, Research monograph, no. 58, Massachusetts, USA: M.I.T. Press, 1970.

    Google Scholar 

  55. W.E. Smith, Electric and Magnetic Energy-Storage in Passive Non-Reciprocal Networks, Electronics Letters, 1967, 3, 389–391.

    Google Scholar 

  56. W.E. Smith, Average Energy Storage by an One-Port and Minimum Energy Synthesis, IEEE Transactions on Circuit Theory, 1970, 5, 427–430.

    Google Scholar 

  57. V. Ionescu, Hilbert Space Applications to Distorted Signal Analysis, (in Romanian: Aplicatii ale spatiilor Hilbert la studiul regimului deformant), Electrotehnica, 1958, 6, 280–286.

    Google Scholar 

  58. C.I. Mocanu, Electric Circuits Theory (in Romanian: Teoria circuitelor electrice), Bucharest, Romania: Editura Didactica si Pedagogica, 1979.

    Google Scholar 

  59. I.F. Hantila, N. Vasile, E. Demeter, S. Marinescu, M. Covrig, The Stationary Electromagnetic Field in Non-Linear Media (in Romanian: Campul electromagnetic stationar in medii neliniare), Bucharest, Romania, Editura ICPE, 1997.

    Google Scholar 

  60. V. Fireteanu, M. Popa, T. Tudorache, L. Levacher, B. Paya, Y. Neau, Maximum of Energetic Efficiency in Induction through-Heating Processes, Proceedings of HES Symposium, Padua, Italy, 2004, 80–86.

    Google Scholar 

  61. F. Spinei, H. Andrei, Energetical Minimum Solution for the Resistive Network, Proceedings of National Symposium of Theoretical Electrotechnics SNET, Politehnica University of Bucharest, Romania, 2004, 443–450.

    Google Scholar 

  62. H. Andrei, F. Spinei, C. Cepisca, Theorems about the Minimum of the Power Functional in Linear and Resistive Circuits, Proc. of Advanced Topics in Electrical Engineering ATEE’04, Politehnica University of Bucharest, Romania, 2004, 22–18.

    Google Scholar 

  63. H. Andrei, F. Spinei, C. Cepisca, N. Voicu, Contributions Regarding the Principles of the Minimum Dissipated Power in Stationary Regime, Proc. of IEEE Conference on Circuits and Systems CAS, Dallas, USA, 2006, 143–47.

    Google Scholar 

  64. H. Andrei, F. Spinei, I. Caciula, P.C. Andrei, The Systematic Analysis of the Absorbed Power in DC Networks with Modifiable Parameters Using a New Mathematic Algorithm, Proc. of IEEE-AQTR, Cluj Napoca, Romania, 2008, 121–124.

    Google Scholar 

  65. H. Andrei, F. Spinei, P. Andrei, U. Rohde, M. Silaghi, H. Silaghi, Evaluation of Hilbert Space Techniques and Lagrange’s Method for the Analysis of Dissipated Power in DC Circuits, Proc. of IEEE-European Conference on Circuit Theory and Design ECCTD’09, Antalya, Turkey, 2009, 862–865.

    Google Scholar 

  66. H. Andrei, F. Spinei, C. Cepisca, P.C. Andrei, Mathematical Solution to Solve the Minimum Power Point Problem for DC Circuits, Proc. of IEEE-AQTR Conference, May 28–30, Cluj Napoca, 2010, 322–328.

    Google Scholar 

  67. H. Andrei, G. Chicco, F. Spinei, Minimum Dissipated Power and Energy - Two General Principles of the Linear Electric and Magnetic Circuits in Quasi-Stationary Regime, pp. 140–205, chapter 5 of the book Advances in Energy Research: Distributed Generations Systems Integrating Renewable Energy Resources, Edited by N. Bizon, Nova Science Publishers, New York, 2011.

    Google Scholar 

  68. H. Andrei, P.C. Andrei, Matrix Formulations of Minimum Dissipated Power Principles and Nodal Method of Circuits Analysis, Proc. of IEEE-Advanced Topics in Electrical Engineering - ATEE, 23–25 May, 2013, Bucharest, Romania, paper ELCI 1.

    Google Scholar 

  69. H. Andrei, P.C. Andrei, G. Oprea, B. Botea, Basic Equations of Linear Electric and Magnetic Circuits in Quasi-stationary State Based on Principle of Minimum Absorbed Power and Energy, Proc. of IEEE-ISFEE, Bucharest, 28–29 Nov, 2014, 1–6.

    Google Scholar 

  70. H. Andrei, F. Spinei, An Extension of the Minimum Energetical Principle in Stationary Regime for Electric and Magnetic Circuits, Proc. of Advanced Topics in Electrical Engineering ATEE’06, Politehnica University of Bucharest, Romania, 2006, 210–213.

    Google Scholar 

  71. H. Andrei, F. Spinei, The Minimum Energetical Principle in Electric and Magnetic Circuits, Proc. of IEEE European Conference on Circuit Theory and Design ECCTD, Sevilla, Spain, 2007, 906–909.

    Google Scholar 

  72. H. Andrei, F. Spinei, An Extension of the Minimum Energy Principle in Stationary Regime for Electric and Magnetic Circuits, Romanian Journal of Technical Sciences Series in Electrotechnique and Energetic, 2007, 52, 419–427.

    Google Scholar 

  73. H. Andrei, G. Chicco, F. Spinei, C. Cepisca, Minimum Energy Principle for Electric and Magnetic Circuits in Quasi-Stationary Regime, Journal of Optoelectronics and Advanced Materials, 2008, 10 (5), 1203–1207.

    Google Scholar 

  74. H. Andrei, P.C. Andrei, G. Mantescu Matrix Formulation of Minimum Absorbed Energy Principle and Nodal Method of Magnetic Circuits Analysis, Proc. of 14th IEEE International Conference on Optimization of Electrical and Electronic Equipment - OPTIM 2014, 22–24, May 2014, Brasov, 59-64.

    Google Scholar 

  75. L.O. Chua, Introduction to Nonlinear Network Theory: Part I, New York, USA: Mc Graw Hill Book Company, 1969.

    Google Scholar 

  76. H. Lev-Ari, A. Stankovic, Hilbert Space Techniques for Modeling and Compensation of Reactive Power in Energy Processing System, IEEE Transactions on Circuits and Systems 2003, 50 (4), 540–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Andrei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Andrei, H., Andrei, P.C., Cazacu, E., Stanculescu, M. (2017). Fundamentals of Reactive Power in AC Power Systems. In: Mahdavi Tabatabaei, N., Jafari Aghbolaghi, A., Bizon, N., Blaabjerg, F. (eds) Reactive Power Control in AC Power Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-51118-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51118-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51117-7

  • Online ISBN: 978-3-319-51118-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics