Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 686))

  • 828 Accesses

Abstract

In order to improve the performance of solar energy systems, accurate modeling of current versus voltage (IV) characteristics of solar cells has attracted the attention of various researches. The main drawback in accurate modeling is the lack of information about the precise parameter values which indeed characterize the solar cell. Since such parameters cannot be extracted from the datasheet specifications, an optimization technique is necessary to adjust experimental data to the solar cell model. Considering the IV characteristics of solar cells, the optimization task involves the solution of complex non-linear and multi-modal objective functions. Several optimization approaches have been presented to identify the parameters of solar cells. However, most of them obtain sub-optimal solutions due to their premature convergence and their difficulty to overcome local minima in multi-modal problems. This chapter describes the use of the Artificial Bee Colony (ABC) algorithm to accurately identify the solar cells’ parameters. The ABC algorithm is an evolutionary method inspired by the intelligent foraging behavior of honeybees. In comparison with other evolutionary algorithms, ABC exhibits a better search capacity to face multi-modal objective functions. In order to illustrate the proficiency of the presented approach, it is compared to other well-known optimization methods. Experimental results demonstrate the high performance of the presented method in terms of robustness and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renewables, 2010. Global Status Report. http://www.ren21.net/globalstatusreport/.

  2. Ishaque K, Salam Z, Mekhilef S, Shamsudin A. Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl Energy 2012;99:297–308.

    Google Scholar 

  3. Orioli A, Gangi AD. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl Energy 2013;102:1160–77.

    Google Scholar 

  4. Sandrolini L, Artioli M, Reggiani U. Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Appl Energy 2010;87:442–51.

    Google Scholar 

  5. Amrouche B, Guessoum A, Belhamel M. A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl Energy 2012;91:395–404.

    Google Scholar 

  6. Bonanno F, Capizzi G, Graditi G, Napoli C, Tina GM. A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl Energy 2012;97:956–61.

    Google Scholar 

  7. L. Han, N. Koide, Y. Chiba, T. Mitate. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters 13 (2004) 2433–2435.

    Google Scholar 

  8. M.G. Villalva, J.R. Gazoli, E.R. Filho. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics 24 (5) (2009) 1198–1208.

    Google Scholar 

  9. T. Huld, R. Gottschalg, H.G. Beyer, M. Topic. Mapping the performance of a PV modules, effects of module type and data averaging. Solar Energy 84 (2010) 324–328.

    Google Scholar 

  10. W. Xiao, M.G.J Lind, W.G Dunford, A Capel. Real-time identification of optimal operating points in photovoltaic power systems. IEEE Transactions on Industrial Electronics 53 (4) (2006), 1017–1026.

    Google Scholar 

  11. M. Chegaar, Z. Ouennough, F. Guechi, H. Langueur. Determination of solar cells parameters under illuminated conditions. Journal of Electron Devices 2 (2003) 17–21.

    Google Scholar 

  12. M. Ye, X. Wang, Y. Xu. Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics 105 (9) (2009) 094502–094508.

    Google Scholar 

  13. Alireza Askarzadeh, Alireza Rezazadeh. Parameter identification for solar cell models using harmony search-based algorithms, Solar Energy 86 (11) (2012) 3241–3249.

    Google Scholar 

  14. T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Solar Energy (4) 1986 1–12.

    Google Scholar 

  15. A. Ortiz-Conde, F.J. Garcia Sanchez, J. Muci. New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics. Solar Energy Materials and Solar Cells 90 (3) (2006) 352–361.

    Google Scholar 

  16. D.S.H. Chan, J.R. Phillips, J.C.H. Phang. A comparative study of extraction methods for solar cell model parameters. Solid-State Electronics 29 (3) (1986) 329–337.

    Google Scholar 

  17. M.R. AlRashidi, M.F. AlHajri, K.M. El-Naggar, A.K. Al-Othman. A new estimation approach for determining the I–V characteristics of solar cells. Solar Energy, 85 (7) (2011) 1543–1550.

    Google Scholar 

  18. J.A. Jervase, H. Bourdoucen, A. Al-Lawati. Solar cell parameter extraction using genetic algorithms. Measurement Science and Technology 12 (11) (2001) 1922–1925.

    Google Scholar 

  19. M. Ye, X. Wang, Y. Xu. Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics 105 (9) (2009) 094502–094508.

    Google Scholar 

  20. H. Wei, J. Cong, X. Lingyun, S. Deyun. Extracting solar cell model parameters based on chaos particle swarm algorithm. In: International Conference on Electric Information and Control Engineering (ICEICE), (2011) pp. 398–402.

    Google Scholar 

  21. K.M. El-Naggar, M.R. AlRashidi, M.F. AlHajri, A.K. Al-Othman. Simulated Annealing algorithm for photovoltaic parameters identification. Solar Energy, 86 (1) (2012) 266–274.

    Google Scholar 

  22. Ondřej Hrstka, Anna Kuĉerová. Improvements of real coded genetic algorithms based on differential operators preventing premature convergence, Advances in Engineering Software, 35, (2004), 237–246.

    Google Scholar 

  23. Behrooz OstadmohammadiArani, PooyaMirzabeygi, MasoudShariatPanahi. An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance, Swarm and Evolutionary Computation, 11, (2013), 1–15.

    Google Scholar 

  24. Ling Qing, Wu Gang, Yang Zaiyue, Wang Qiuping. Crowding clustering genetic algorithm for multimodal function optimization, Applied Soft Computing, 8, (2008), 88–95.

    Google Scholar 

  25. Minqiang Li, Dan Lin, Jisong Kou. A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization, Applied Soft Computing, 12, (2012), 975–987.

    Google Scholar 

  26. Malihe Niksirat, Mehdi Ghatee, S. Mehdi Hashemi. Multimodal K-shortest viable path problem in Tehran public transportation network and its solution applying ant colony and simulated annealing algorithms, Applied Mathematical Modelling, 36, (2012), 5709–5726.

    Google Scholar 

  27. Chia-Ming Wang, Yin-Fu Huang. Self-adaptive harmony search algorithm for optimization, Expert Systems with Applications, 37, (2010), 2826–2837.

    Google Scholar 

  28. Jun-hua Li, Ming Li. An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments, Optik, 124, (2013), 6780–6785.

    Google Scholar 

  29. Hui Pan, Ling Wang, Bo Liu. Particle swarm optimization for function optimization in noisy environment, Applied Mathematics and Computation, 181, (2006), 908–919.

    Google Scholar 

  30. Hans-Georg Beyer. Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice, Comput. Methods Appl. Mech. Engrg. 186, (2000), 239–267.

    Google Scholar 

  31. D. Karaboga. An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005).

    Google Scholar 

  32. D. Karaboga, B. Basturk. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8 (1) (2008) 687–697.

    Google Scholar 

  33. D. Karaboga, B. Akay. A comparative study of artificial bee colony algorithm. Appl Math Comput 214 (2009) 108–132.

    Google Scholar 

  34. N. Karaboga. A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346 (2009) 328–348.

    Google Scholar 

  35. Q-K. Pan, M. Fatih Tasgetiren, P.N. Suganthan, T.J. Chua. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences (2011). doi:10.1016/j.ins.2009.12.025.

  36. F. Kang, J. Li, Q. Xu. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87 (2009) 861–870.

    Google Scholar 

  37. C. Zhang, D. Ouyang, J. Ning. An artificial bee colony approach for clustering. Expert Syst Appl 37 (2010) 4761–4767.

    Google Scholar 

  38. D. Karaboga, C. Ozturk. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 11 (2011) 652–657.

    Google Scholar 

  39. S.L. Ho, S. Yang. An artificial bee colony algorithm for inverse problems. Int J Appl Electromagn Mech, 31 (2009) 181–192.

    Google Scholar 

  40. D. Karaboga, B. Akay. A comparative study of artificial bee colony algorithm. Appl Math Comput 214 (2009) 108–132.

    Google Scholar 

  41. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Osuna, V., A Multilevel thresholding algorithm using electromagnetism optimization, Neurocomputing, (2014), 357–381.

    Google Scholar 

  42. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Perez-Cisneros, M., Multilevel thresholding segmentation based on harmony search optimization, Journal of Applied Mathematics, 2013, 575414.

    Google Scholar 

  43. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Seeking multi-thresholds for image segmentation with Learning Automata, Machine Vision and Applications, 22 (5), (2011), 805–818.

    Google Scholar 

  44. Cuevas, E., Ortega-Sánchez, N., Zaldivar, D., Pérez-Cisneros, M., Circle detection by Harmony Search Optimization, Journal of Intelligent and Robotic Systems: Theory and Applications, 66 (3), (2012), 359–376.

    Google Scholar 

  45. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Ramírez-Ortegón, M., Circle detection using discrete differential evolution Optimization, Pattern Analysis and Applications, 14 (1), (2011), 93–107.

    Google Scholar 

  46. Cuevas, E., Echavarría, A., Zaldívar, D., Pérez-Cisneros, M., A novel evolutionary algorithm inspired by the states of matter for template matching, Expert Systems with Applications, 40 (16), (2013), 6359–6373.

    Google Scholar 

  47. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945).

    Google Scholar 

  48. Garcia, S., Molina, D., Lozano, M.,Herrera, F.:Astudy on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008). doi:10.1007/s10732-008-9080-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cuevas, E., Osuna, V., Oliva, D. (2017). Photovoltaic Cell Design. In: Evolutionary Computation Techniques: A Comparative Perspective. Studies in Computational Intelligence, vol 686. Springer, Cham. https://doi.org/10.1007/978-3-319-51109-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51109-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51108-5

  • Online ISBN: 978-3-319-51109-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics