Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 686))

Abstract

Hough transform (HT) represents the most common method for circle detection, exhibiting robustness and parallel processing. However, HT adversely demands a considerable computational load and large storage. Alternative approaches may include heuristic methods with iterative optimization procedures for detecting multiple circles. In this chapter a new circle detector for image processing is presented. In the approach, the detection process is therefore assumed as a multi-modal problem which allows multiple circle detection through only one optimization procedure. The algorithm uses a combination of three non-collinear edge points as parameters to determine circles candidates. A matching function (nectar amount) determines if such circle candidates (bee-food-sources) are actually present in the image. Guided by the values of such matching function, the set of encoded candidate circles are evolved through the Artificial Bee Colony (ABC) algorithm so the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. An analysis of the incorporated exhausted-sources memory is executed in order to identify potential local optima i.e. other circles. The overall approach yields a fast multiple-circle detector that locates circular shapes delivering sub-pixel accuracy despite complicated conditions such as partial occluded circles, arc segments or noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. da Fontoura Costa, L., Marcondes Cesar Jr., R., 2001. Shape Análisis and Classification. CRC Press, Boca Raton FL.

    Google Scholar 

  2. Yuen, H., Princen, J., Illingworth, J., Kittler, J., 1990. Comparative study of Hough transform methods for circle finding. Image Vision Comput. 8 (1), 71–77.

    Google Scholar 

  3. Iivarinen, J., Peura, M., Sarela, J., Visa, A., 1997. Comparison of combined shape descriptors for irregular objects. In: Proc. 8th British Machine Vision Conf., Cochester, UK, pp. 430–439.

    Google Scholar 

  4. Jones, G., Princen, J., Illingworth, J., Kittler, J., 1990. Robust estimation of shape parameters. In: Proc. British Machine Vision Conf., pp. 43–48.

    Google Scholar 

  5. Fischer, M., Bolles, R., 1981. Random sample consensus: A paradigm to model fitting with applications to image analysis and automated cartography. CACM 24 (6), 381–395.

    Google Scholar 

  6. Bongiovanni, G., and Crescenzi, P.: Parallel Simulated Annealing for Shape Detection, Computer Vision and Image Understanding, vol. 61, no. 1, pp. 60–69, 1995.

    Google Scholar 

  7. Roth, G., Levine, M.D., 1994. Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. Machine Intell. 16 (9), 901–905.

    Google Scholar 

  8. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Ramírez-Ortegón, M., Circle detection using discrete differential evolution Optimization, Pattern Analysis and Applications, 14 (1), (2011), 93–107.

    Google Scholar 

  9. Cuevas, E., Ortega-Sánchez, N., Zaldivar, D., Pérez-Cisneros, M., Circle detection by Harmony Search Optimization, Journal of Intelligent and Robotic Systems: Theory and Applications, 66 (3), (2012), 359–376.

    Google Scholar 

  10. Peura, M., Iivarinen, J., 1997. Efficiency of simple shape descriptors. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (Eds.), Advances in Visual Form Analysis. World Scientific, Singapore, pp. 443–451.

    Google Scholar 

  11. Muammar, H., Nixon, M., 1989. Approaches to extending the Hough transform. In: Proc. Int. Conf. on Acoustics, Speech and Signal Processing ICASSP_89, vol. 3, pp. 1556–1559.

    Google Scholar 

  12. T.J. Atherton, D.J. Kerbyson, “Using phase to represent radius in the coherent circle Hough transform”, Proc, IEE Colloquium on the Hough Transform, IEE, London, 1993.

    Google Scholar 

  13. Shaked, D., Yaron, O., Kiryati, N., 1996. Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput. Vision Image Understanding 63, 512–526.

    Google Scholar 

  14. Xu, L., Oja, E., Kultanen, P., 1990. A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Lett. 11 (5), 331–338.

    Google Scholar 

  15. Han, J.H., Koczy, L.T., Poston, T., 1993. Fuzzy Hough transform. In: Proc. 2nd Int. Conf. on Fuzzy Systems, vol. 2, pp. 803–808.

    Google Scholar 

  16. Becker J., Grousson S., Coltuc D., 2002. From Hough transforms to integral transforms. In: Proc. Int. Geoscience and Remote Sensing Symp., 2002 IGARSS_02, vol. 3, pp. 1444–144.

    Google Scholar 

  17. Ayala-Ramirez, V., Garcia-Capulin, C. H., Perez-Garcia, A. and Sanchez-Yanez, R. E. Circle detection on images using genetic algorithms. Pattern Recognition Letters, 2006, 27, pp. 652–657.

    Google Scholar 

  18. Dasgupta, S., Das, S., Biswas A. and Abraham, A. Automatic circle detection on digital images whit an adaptive bacterial foraging algorithm. Soft Computing, 2009, doi:10.1007/s00500-009-0508-z.

  19. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  20. K. Price, R. Storn, A. Lampinen, Differential Evolution a Practical Approach to Global Optimization, Springer Natural Computing Series, 2005.

    Google Scholar 

  21. J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks (Piscataway, NJ), 1995, pp. 1942–1948.

    Google Scholar 

  22. M. Dorigo, V. Maniezzo, A. Colorni, Positive feedback as a search strategy, Technical Report 91-016, Politecnico di Milano, Italy, 1991.

    Google Scholar 

  23. Liu Y, Passino K. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628, 2002.

    Google Scholar 

  24. D. Karaboga. An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.

    Google Scholar 

  25. N. Karaboga. A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute 346 (2009) 328–348.

    Google Scholar 

  26. S. L. Ho, S. Yang. An artificial bee colony algorithm for inverse problems. International Journal of Applied Electromagnetics and Mechanics, 31 (2009) 181–192.

    Google Scholar 

  27. Ying-ping Chen, Pei Jiang. Analysis of particle interaction in particle swarm optimization. Theoretical Computer Science 411(21), 2010, 2101–2115.

    Google Scholar 

  28. Hongnian Zang, Shujun Zhang, Kevin Hapeshia. A Review of Nature-Inspired Algorithms. Journal of Bionic Engineering 7(1), 2010, S232–S237.

    Google Scholar 

  29. Josef Tvrdík. Adaptation in differential evolution: A numerical comparison. Applied Soft Computing 9(3), 2009, 1149–1155.

    Google Scholar 

  30. Arijit Biswas, Swagatam Das, Ajith Abraham, Sambarta Dasgupta. Stability analysis of the reproduction operator in bacterial foraging optimization. Theoretical Computer Science 411, 2010, 2127–2139.

    Google Scholar 

  31. D. Karaboga, B. Basturk. On the performance of artificial bee colony (ABC) algorithm. Applied soft computing, Volume 8, Issue 1, January 2008, Pages 687–697.

    Google Scholar 

  32. D. Karaboga, B. Akay. A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation 214 (2009) 108–132.

    Google Scholar 

  33. Bresenham, J.E.: A Linear Algorithm for Incremental Digital Display of Circular Arcs. Communications of the ACM 20, 100–106. (1987).

    Google Scholar 

  34. Van Aken, J R. Efficient ellipse-drawing algorithm, IEEE Comp, Graphics applic., 2005. 4, (9), pp. 24–35.

    Google Scholar 

  35. Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. European Journal of Operational Research 126 (2000) 662–674.

    Google Scholar 

  36. Greenhalgh, D., Marshall, S.: Convergence criteria for genetic algorithms. SIAM Journal on Computing 20 (2000) 269–282.

    Google Scholar 

  37. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83.

    Google Scholar 

  38. Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J Heurist. doi:10.1007/s10732-008-9080-4.

  39. J. Santamaría, O. Cordón, S. Damas, J.M. García-Torres, A. Quirin, Performance Evaluation of Memetic Approaches in 3D Reconstruction of Forensic Objects. Soft Computing, doi:10.1007/s00500-008-0351-7, in press (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cuevas, E., Osuna, V., Oliva, D. (2017). Multi-circle Detection on Images. In: Evolutionary Computation Techniques: A Comparative Perspective. Studies in Computational Intelligence, vol 686. Springer, Cham. https://doi.org/10.1007/978-3-319-51109-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51109-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51108-5

  • Online ISBN: 978-3-319-51109-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics