Skip to main content

Multilevel Segmentation in Digital Images

  • Chapter
  • First Online:
Evolutionary Computation Techniques: A Comparative Perspective

Part of the book series: Studies in Computational Intelligence ((SCI,volume 686))

Abstract

Segmentation is used to divide an image into separate regions, which in fact correspond to different real-world objects. One interesting functional criterion for segmentation is the Tsallis entropy (TE), which gives excellent results in bi-level thresholding. However, when it is applied to multilevel thresholding (MT), its evaluation becomes computationally expensive, since each threshold point adds restrictions, multimodality and complexity to its functional formulation. In this chapter, a new algorithm for multilevel segmentation based on the Electromagnetism-Like algorithm (EMO) is presented. In the approach, the EMO algorithm is used to find the optimal threshold values by maximizing the Tsallis entropy. Experimental results over several images demonstrate that the proposed approach is able to improve the convergence velocity, compared with similar methods such as Cuckoo search, and Particle Swarm Optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Seeking multi-thresholds for image segmentation with Learning Automata, Machine Vision and Applications, 22 (5), (2011), 805–818.

    Google Scholar 

  2. Y. Kong, Y. Deng, Q. Dai, and S. Member, “Discriminative Clustering and Feature Selection for Brain MRI Segmentation,” IEEE Signal Process. Lett., vol. 22, no. 5, pp. 573–577, 2015.

    Google Scholar 

  3. X. Cao, Q. Li, X. Du, M. Zhang, and X. Zheng, “Exploring effect of segmentation scale on orient-based crop identification using HJ CCD data in Northeast China,” IOP Conf. Ser. Earth Environ. Sci., vol. 17, p. 012047, 2014.

    Google Scholar 

  4. A. K. Bhandari, V. K. Singh, A. Kumar, and G. K. Singh, “Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy,” Expert Syst. Appl., vol. 41, no. 7, pp. 3538–3560, 2014.

    Google Scholar 

  5. S. Sarkar and S. Das, “Multilevel Image Thresholding Based on 2D Histogram and Maximum Tsallis Entropy—A Differential Evolution Approach,” Lect. Notes Comput. Sci., vol. 22, no. 12, pp. 4788–4797, 2013.

    Google Scholar 

  6. B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Appl. Soft Comput., vol. 13, no. 6, pp. 3066–3091, 2012.

    Google Scholar 

  7. H. Xia, S. Song, and L. He, “A modified Gaussian mixture background model via spatiotemporal distribution with shadow detection,” Signal, Image Video Process., 2015.

    Google Scholar 

  8. G. Moser, S. B. Serpico, and S. Member, “Generalized Minimum-Error Thresholding for Unsupervised Change Detection From SAR Amplitude Imagery.pdf,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, 2006.

    Google Scholar 

  9. Sezgin M, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging, vol. 13, no. January, pp. 146–168, 2004.

    Google Scholar 

  10. N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979.

    Google Scholar 

  11. A. K. C. J. N. Kapur, P. K. Sahoo, A. K. C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram.” Computer Vision Graphics Image Processing, pp. 273–285, 1985.

    Google Scholar 

  12. P. D. Sathya and R. Kayalvizhi, “Optimal multilevel thresholding using bacterial foraging algorithm,” Expert Syst. Appl., vol. 38, no. 12, pp. 15549–15564, 2011.

    Google Scholar 

  13. S. Agrawal, R. Panda, S. Bhuyan, and B. K. Panigrahi, “Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm,” Swarm Evol. Comput., vol. 11, pp. 16–30, 2013.

    Google Scholar 

  14. C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys., vol. 52, pp. 479–487, 1988.

    Google Scholar 

  15. E. K. Tang, P. N. Suganthan, and X. Yao, “An analysis of diversity measures,” Mach. Learn., vol. 65, no. April, pp. 247–271, 2006.

    Google Scholar 

  16. Y. Zhang and L. Wu, “Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach,” Entropy, vol. 13, pp. 841–859, 2011.

    Google Scholar 

  17. C. Tsallis, “Computational applications of nonextensive statistical mechanics,” J. Comput. Appl. Math., vol. 227, no. 1, pp. 51–58, 2009.

    Google Scholar 

  18. Cuevas, E., Ortega-Sánchez, N., Zaldivar, D., Pérez-Cisneros, M., Circle detection by Harmony Search Optimization, Journal of Intelligent and Robotic Systems: Theory and Applications, 66(3), (2012), 359–376.

    Google Scholar 

  19. N. Sri, M. Raja, G. Kavitha, and S. Ramakrishnan, “Analysis of Vasculature in Human Retinal Images Using Particle Swarm Optimization Based Tsallis Multi-level Thresholding and Similarity Measures,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7677, no. 1, pp. 380–387, 2012.

    Google Scholar 

  20. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Perez-Cisneros, M., Multilevel thresholding segmentation based on harmony search optimization, Journal of Applied Mathematics, 2013, 575414.

    Google Scholar 

  21. Ş. I. Birbil and S. C. Fang, “An electromagnetism-like mechanism for global optimization,” J. Glob. Optim., vol. 25, no. 1, pp. 263–282, 2003.

    Google Scholar 

  22. A. M. A. C. Rocha and E. M. G. P. Fernandes, “Modified movement force vector in an electromagnetism-like mechanism for global optimization,” Optim. Methods Softw., vol. 24, no. 2, pp. 253–270, 2009.

    Google Scholar 

  23. H. L. Hung and Y. F. Huang, “Peak to average power ratio reduction of multicarrier transmission systems using electromagnetism-like method,” Int. J. Innov. Comput. Inf. Control, vol. 7, no. 5, pp. 2037–2050, 2011.

    Google Scholar 

  24. A. Yurtkuran and E. Emel, “A new Hybrid Electromagnetism-like Algorithm for capacitated vehicle routing problems,” Expert Syst. Appl., vol. 37, no. 4, pp. 3427–3433, 2010.

    Google Scholar 

  25. J. Y. Jhang and K. C. Lee, “Array pattern optimization using electromagnetism-like algorithm,” AEU - Int. J. Electron. Commun., vol. 63, pp. 491–496, 2009.

    Google Scholar 

  26. C. H. Lee and F. K. Chang, “Fractional-order PID controller optimization via improved electromagnetism-like algorithm,” Expert Syst. Appl., vol. 37, no. 12, pp. 8871–8878, 2010.

    Google Scholar 

  27. L. N. De Castro and F. J. Von Zuben, “Learning and optimization using the clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 239–251, 2002.

    Google Scholar 

  28. A. M. A. C. Rocha and E. M. G. P. Fernandes, “Hybridizing the Electromagnetism-like algorithm with Descent Search for Solving Engineering Design Problems,” Int. J. Comput. Math., vol. 86, no. 10–11, pp. 1932–1946, 2009.

    Google Scholar 

  29. P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. M. F. Ferreira, “An efficient method for segmentation of images based on fractional calculus and natural selection,” Expert Syst. Appl., vol. 39, no. 16, pp. 12407–12417, 2012.

    Google Scholar 

  30. P. Wu, W.-H. Yang, and N.-C. Wei, “An Electromagnetism Algorithm of Neural Network Analysis—an Application To Textile Retail Operation,” J. Chinese Inst. Ind. Eng., vol. 21, no. 1, pp. 59–67, 2004.

    Google Scholar 

  31. K. De Jong, “Learning with genetic algorithms: An overview,” Mach. Learn., vol. 3, pp. 121–138, 1988.

    Google Scholar 

  32. B. Naderi, R. Tavakkoli-Moghaddam, and M. Khalili, “Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan,” Knowledge-Based Syst., vol. 23, no. 2, pp. 77–85, 2010.

    Google Scholar 

  33. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

    Google Scholar 

  34. D. Z. Lin Zhang, Lei Zhang, XuanqinMou, “FSIM : A Feature Similarity Index for Image,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378–2386, 2011.

    Google Scholar 

  35. C. Tsallis, “Entropic nonextensivity: A possible measure of complexity,” Chaos, Solitons and Fractals, vol. 13, pp. 371–391, 2002.

    Google Scholar 

  36. S. García, D. Molina, M. Lozano, and F. Herrera, “A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary Algorithms’ Behaviour: A Case Study on the CEC 2005 Special Session on Real Parameter Optimization,” J. Heuristics, vol. 15, pp. 617–644, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cuevas, E., Osuna, V., Oliva, D. (2017). Multilevel Segmentation in Digital Images. In: Evolutionary Computation Techniques: A Comparative Perspective. Studies in Computational Intelligence, vol 686. Springer, Cham. https://doi.org/10.1007/978-3-319-51109-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51109-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51108-5

  • Online ISBN: 978-3-319-51109-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics