Skip to main content

Cyclic Deformation Behavior of Modified 9Cr–1Mo Steel at Elevated Temperatures

  • Conference paper
  • First Online:
Mechanical and Creep Behavior of Advanced Materials

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2417 Accesses

Abstract

Modified 9Cr–1Mo steel exhibited dynamic strain ageing (DSA) in the temperature range from 523 to 673 K and it was established on the basis of plateau/peak in yield and tensile strength, minima in ductility and serrations in stress–strain curve. High density of dislocations and typical features like dislocation debris, kinks and bowing of dislocations was observed in the regime of DSA. This steel exhibited cyclic softening irrespective of the strain amplitude, strain rate, and temperature. The observed cyclic softening is associated with many factors like cell formation at room temperature and additionally annihilation of array of dislocations at 573 K, in addition to coarsening of carbides at 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37–52 (2008)

    Article  Google Scholar 

  2. S.L. Mannan, S.C. Chetal, B. Raj, S.B. Bhoje, Selection of materials for prototype fast breeder reactor. Trans. Indian Inst. Met. 56, 155–178 (2003)

    Google Scholar 

  3. B. Raj, S.L. Mannan, P.R.V. Rao, M.D. Mathew, Development of fuels and structural materials for fast breeder reactors. Sadhana 27, 527–558 (2002)

    Article  Google Scholar 

  4. B. Raj, Indira Gandhi Centre for Atomic Research, Annual Technical Report (2010) 1–248

    Google Scholar 

  5. W. Jones, C. Hills, D. Polonis, Microstructural evolution of modified 9Cr–1Mo steel. Metall. Trans. A 22, 1049–1058 (1991)

    Article  Google Scholar 

  6. V. Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. J. Nucl. Mater. 378, 273–281 (2008)

    Article  Google Scholar 

  7. K.B.S. Rao, M. Valsan, R. Sandhya, S.L. Mannan, P. Rodriguez, Dynamic strain ageing effects in low cycle fatigue. High Temp. Mater. Processes (London) 7, 171–178 (1986)

    Google Scholar 

  8. S. Mannan, Role of dynamic strain ageing in low cycle fatigue. Bull. Mater. Sci. 16, 561–582 (1993)

    Article  Google Scholar 

  9. P. Rodriguez, Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984)

    Article  Google Scholar 

  10. K.S. Chandravathi, K. Laha, P. Parameswaran, M.D. Mathew, Effect of microstructure on the critical strain to onset of serrated flow in modified 9Cr–1Mo steel. Int. J. Press. Vessels Pip. 89, 162–169 (2012)

    Article  Google Scholar 

  11. R. Kishore, R.N. Singh, T.K. Sinha, B.P. Kashyap, Effect of dynamic strain ageing on the tensile properties of a modified 9Cr–1Mo steel. J. Mater. Sci. 32, 437–442 (1997)

    Article  Google Scholar 

  12. C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, I. Guillot, Influence of the temperature on the tensile behaviour of a modified 9Cr–1Mo steel. Mater. Sci. Eng., A 527, 6758–6764 (2010)

    Article  Google Scholar 

  13. A.K. Roy, P. Kumar, D. Maitra, Dynamic strain ageing of P91 grade steels of varied silicon content. Mater. Sci. Eng., A 499, 379–386 (2009)

    Article  Google Scholar 

  14. M.D. Mathew, K. Laha, R. Sandhya, Creep and low cycle fatigue behaviour of fast reactor structural materials. Procedia Eng. 55, 17–26 (2013)

    Article  Google Scholar 

  15. R. Kannan, V. Sankar, R. Sandhya, M.D. Mathew, Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels. Procedia Eng. 55, 149–153 (2013)

    Article  Google Scholar 

  16. D.W. Kim, S.S. Kim, Contribution of microstructure and slip system to cyclic softening of 9Wt.%Cr steel. Int. J. Fatigue 36, 24–29 (2012)

    Article  Google Scholar 

  17. V. Shankar, M. Valsan, K.B.S. Rao, S.D. Pathak, Low cycle fatigue and creep-fatigue interaction behavior of modified 9Cr–1Mo ferritic steel and its weld joint. Trans. Indian Inst. Met. 63, 622–627 (2010)

    Article  Google Scholar 

  18. V. Shankar, M. Valsan, K.B.S. Rao, R. Kannan, S.L. Mannan, S.D. Pathak, Low cycle fatigue behavior and microstructural evolution of modified 9Cr–1Mo ferritic steel. Mater. Sci. Eng., A 437, 413–422 (2006)

    Article  Google Scholar 

  19. V. Shankar, V. Bauer, R. Sandhya, M.D. Mathew, H.J. Christ, Low Cycle fatigue and thermo-mechanical fatigue behavior of modified 9Cr–1Mo ferritic steel at elevated temperatures. J. Nucl. Mater. 420, 23–30 (2012)

    Article  Google Scholar 

  20. G. Ebi, A. Mcevily, Effect of processing on the high temperature low cycle fatigue properties of modified 9Cr-1Mo ferritic steel. Fatigue Fract. Eng. Mater. 7, 299–314 (1984)

    Article  Google Scholar 

  21. X. Gong, P. Marmy, A. Volodin et al., Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead-bismuth under low cycle fatigue. Corros. Sci. 102, 137–152 (2016)

    Article  Google Scholar 

  22. X. Gong, P. Marmy, L. Qin, B. Verlinden, M. Wevers, M. Seefeldt, Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead bismuth eutectic at 160–450 °C. J. Nucl. Mater. 468, 289–298 (2016)

    Article  Google Scholar 

  23. S. Nishino, K.S. Shiozawa, A. Kojima, Y. Yamamoto, Influence of thermal forged aging and notch on low cycle fatigue strength of steel at elevated temperature. J. Soc. Mater. Sci., Japan 48, 610–615 (1999)

    Article  Google Scholar 

  24. S. Kim, J.R. Weertman, Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue. Metall. Trans. 19A, 999–1007 (1988)

    Article  Google Scholar 

  25. K. Guguloth, S. Sivaprasad, D. Chakrabarti, S. Tarafder, Low cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature. Mater. Sci. Eng., A 604, 196–206 (2014)

    Article  Google Scholar 

  26. A. Nagesha, M. Valsan, R. Kannan, K.B.S. Rao, S.L. Mannan, Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr–1Mo ferritic steel. Int. J. Fatigue 24, 1285–1293 (2002)

    Article  Google Scholar 

  27. A. Nagesha, R. Kannan, G.V.S. Sastry et al., Isothermal and thermomechanical fatigue studies on a modified 9Cr–1Mo ferritic martensitic steel. Mater. Sci. Eng., A 554, 95–104 (2012)

    Article  Google Scholar 

  28. P. Verma, R.G. Sudhakar, P. Chellapandi, G.S. Mahobia, K. Chattopadhyay, N.C. Santhi Srinivas, V. Singh, Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr–1Mo steel. Mater. Sci. Eng., A 621, 39–51 (2015)

    Article  Google Scholar 

  29. S. Harper, Precipitation of carbon and nitrogen in cold-worked alpha-iron. Phys. Rev. 83, 710–712 (1951)

    Article  Google Scholar 

  30. R.W. Balluffi, On measurements of self-diffusion rates along dislocations in F.C.C. metals. Physica Status Solidi (B) 42, 11–34 (1970)

    Article  Google Scholar 

  31. L. Cuddy, W. Leslie, Some aspects of serrated yielding in substitutional solid solutions of iron. Acta Metall. 20, 1157–1167 (1972)

    Article  Google Scholar 

  32. R.A. Mulford, U.F. Kocks, New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall. 27, 1125–1134 (1979)

    Article  Google Scholar 

  33. A. Sleeswyk, Slow strain-hardening of ingot iron. Acta Metall. 6, 598–603 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakil Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Singh, V., Verma, P. (2017). Cyclic Deformation Behavior of Modified 9Cr–1Mo Steel at Elevated Temperatures. In: Charit, I., Zhu, Y., Maloy, S., Liaw, P. (eds) Mechanical and Creep Behavior of Advanced Materials. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51097-2_15

Download citation

Publish with us

Policies and ethics