Skip to main content

Irradiation Creep of Zr-Alloys

  • Conference paper
  • First Online:
Mechanical and Creep Behavior of Advanced Materials

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Irradiation creep of Zr-alloy nuclear reactor core components affects the reactor performance and also limits the reactor life in cases where those components cannot easily be replaced. For Zr-2.5Nb pressure tubing irradiation creep has been extensively studied for a range of temperatures, between 250 and 350 °C, and dose rates, between 1 × 1016 and 2 × 1018 n m−2 s−1 (E > 1 meV), using data from various materials test reactors and power reactors. These studies have shown that irradiation creep is controlled by a complex combination of slip and diffusional mass transport (often referred to as irradiation growth in the absence of stress). Irradiation creep is dependent on the crystallographic texture, the dislocation structure, and the grain structure; the importance of each being a function of irradiation temperature and displacement damage rate. Data will be presented, together with mechanistic modelling, to show what factors affect creep under different irradiation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.T. Heald, M.V. Speight, Point defect behaviour in irradiated materials. Acta Metall. 23, 1389 (1975)

    Article  Google Scholar 

  2. F.A. Nichols, Radiation-enhanced Creep. ERDA R&D Report WAPD-T-2636, bettis Atomic Power Laboratory (1975)

    Google Scholar 

  3. R.A. Holt, In-reactor deformation of cold-worked Zr-2.5Nb pressure tubes. J. Nucl. Mater. 372, 182–214 (2008)

    Article  Google Scholar 

  4. C.H. Woo, Theory of irradiation deformation in non cubic metals effects of anisotropic diffusion. J. Nucl. Mater. 159, 237–256 (1988)

    Article  Google Scholar 

  5. C.H. Woo, in Effects of Anisotropic Diffusion on Irradiation Deformation, ed. by F.A. Garner, N.H. Packan, A.S. Kumar, Proceedings of the 13th International Symposium on Radiation-Induced Changes in Microstructure, ASTM STP 955, ASTM International, Philadelphia, PA, 1987, pp. 70–89

    Google Scholar 

  6. R.B. Adamson, F. Garzarolli, C. Patterson, In-reactor creep of zirconium alloys (ANT International, Molnlycke, Sweden, 2009)

    Google Scholar 

  7. K.L. Murty (ed.), Elsevier, Materials ageing and degradation in light water reactors: mechanisms and management—technology & engineering. Woodhead Publishing Series in Energy (2013). ISBN 0857097458 and 9780857097453

    Google Scholar 

  8. L. Walters, G.A. Bickel, M. Griffiths, The Effects of Microstructure and Operating Conditions on Irradiation Creep of Zr-2.5Nb Pressure Tubing, ed. by R.J. Comstock, P. Barbéris, Proceedings of the 17th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1543, ASTM International, West Conshohocken, PA, 2014, pp. 693–722

    Google Scholar 

  9. A.R. Causey, J.E. Elder, R.A. Holt, R.G. Fleck, On the Anisotropy of In-Reactor Creep of Zr-2.5Nb Tubes, ed. by A.M. Garde, E.R. Bradley, Proceedings of the 10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, ASTM International, Philadelphia, PA, 1994, pp. 202–219

    Google Scholar 

  10. A.R. Causey, R.A. Holt, N. Christodoulou, E.T.C. Ho, Irradiation-Enhanced Deformation of Zr-2.5Nb Tubes at High Neutron Fluences, ed. by G.P. Sabol, G.D. Moan, Proceedings of the 12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, ASTM International, West Conshohocken, PA, 2000, pp. 74–84

    Google Scholar 

  11. N. Christodoulou, A.R. Causey, R.A. Holt, C.N. Tome, N. Badie, R.J. Klassen, R. Sauve, C.H. Woo, Modelling In-Reactor Deformation of Zr-2.5Nb Pressure Tubes in CANDU Power Reactors, ed. by E.R. Bradley, G.P. Sabolm, Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295, ASTM, West Conshohocken, PA, 1996, pp. 518–537

    Google Scholar 

  12. R.F. DeAbreu, G.A. Bickel, A.W. Buyers, S.A. Donohue, K. Dunn, M. Griffiths, L. Walters, Temperature and Neutron Flux Dependence of In-Reactor Creep for Cold-worked Zr 2.5Nb, ed. by R.J. Comstock, A. Motta, Proceedings of the 18th International Symposium on Zirconium in the Nuclear Industry, ASTM International, West Conshohocken, PA, 2016

    Google Scholar 

  13. S. Yagnik, R. Adamson, G. Kobylyansky, J.H. Chen, D.r Gilbon, S. Ishimoto, T. Fukuda, L. Hallstadius, A. Obukhov, S. Mahmood, Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants, ed. by R.J. Comstock, A. Motta, Proceedings of the 18th International Symposium on Zirconium in the Nuclear Industry, ASTM International, West Conshohocken, PA, 2016

    Google Scholar 

  14. K.L. Murty (ed.), Elsevier, Materials ageing and degradation in light water reactors: mechanisms and management—technology & engineering. Woodhead Publishing Series in Energy (2013). ISBN 0857097458 and 9780857097453

    Google Scholar 

  15. M. Griffiths, W.G. Davies, G.D. Moan, A.R. Causey, R.A. Holt, S.A. Aldridge, Variability of In-reactor Diametral Deformation for zr-2.5Nb Pressure Tubing. 13th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1423, American Society for Testing and Materials, pp. 796–810

    Google Scholar 

  16. G.A. Bickel, M. Griffiths, Manufacturing variability, microstructure and deformation of Zr-2.5Nb pressure tubes. J. ASTM Int. 4(10) (2007) (Paper ID JAI101126)

    Google Scholar 

  17. G.A. Bickel, M. Griffiths, Manufacturing variability and deformation for Zr-2.5Nb pressure tubes. J. Nucl. Mater. 383(1–2), 9–13 (2008)

    Article  Google Scholar 

  18. D.K. Rodgers, C.E. Coleman, M. Griffiths, G.A. Bickel, J.R. Theaker, I. Muir, A.A. Bahurmuz, S.St Lawrence, M. Resta Levi, In-reactor performance of pressure tubes in CANDU reactors. J. Nucl. Mater. 383(1–2), 22–27 (2008)

    Article  Google Scholar 

  19. G.A. Bickel, M. Griffiths, A. Douchant, S. Douglas, O.T. Woo, A. Buyers, Development of Zr 2.5Nb Pressure Tubes for Advanced CANDU Reactor. Sixteenth International Symposium on Zirconium in the Nuclear Industry, Chengdu, China, June 2010

    Google Scholar 

  20. D.K. Rodgers, M. Griffiths, G.A. Bickel, A. Buyers, C.E. Coleman, H. Nordin, S. St. Lawrence,In-reactor performance of pressure tubes in CANDU reactors. AECL Nucl. Rev. 5(1) (2016). doi:http://dx.doi.org/10.12943/CNR.2016.00007

  21. M.I. Jyrkhama, G.A. Bickel, M.D. Pandey, Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5Nb pressure tubes. Nucl. Eng. Des. 300, 241–248 (2016)

    Article  Google Scholar 

  22. M. Griffiths, R.A. Holt, A. Rogerson, Microstructural aspects of accelerated deformation of zirconium alloy nuclear reactor components. J. Nucl. Mater. 225, 245 (1995) (Proc. 16th Int. Symp. on the Effects of Irradiation on Materials (1995))

    Google Scholar 

  23. G.M. Hood, The Vacancy Properties of Al and alpha-Zr, ed. by S. Saimot, G.R. Purdy, G.V. Kidson, Proceedings of the International Seminar on Solute-Defect Interaction, Theory and Experiment, Pergamon Press, Toronto, 1986, pp. 83–90

    Google Scholar 

  24. G.M. Hood, Point Defect Diffusion in alpha-Zr, ed. by C.H. Woo, R.J. McElroy, Proceedings of the International Conference on Fundamental Mechanisms of Radiation-Induced Creep and Growth (Elsevier Science Publishers B.V., North-Holland–Amsterdam, 1988), pp. 149–175

    Google Scholar 

  25. G.M. Hood, Point Defect properties of α-Zr and their Influence on Irradiation Behaviour of Zr-alloys, AECL-5692 (1977)

    Google Scholar 

  26. M. Griffiths, J.F. Mecke and J.E. Winegar, Evolution of Microstructure in Zirconium Alloys during Irradiation. Proceedings of 11th International Symposium on Zr in the Nuclear Industry, Garmisch, Germany, Sept. 1995, ASTM STP 1295 (1996), p. 580

    Google Scholar 

  27. C.H. Woo, U. Gosele, Dislocation bias in an anisotropic diffusive medium and irradiation growth. J. Nucl. Mater. 119, 219–228 (1983)

    Article  Google Scholar 

  28. P.H. Dederichs, K. Schroeder, Anisotropic diffusion in stress fields. Phys. Rev. B 17, 2524–2536 (1978)

    Article  Google Scholar 

  29. C.H. Woo, Irradiation creep due to elastodiffusion. J. Nucl. Mater. 120, 55–64 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Clinton Mayhew for generating the TKD image. Partial funding for this work was provided by the Candu Owners Group (COG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Griffiths, M., Bickel, G.A., DeAbreu, R., Li, W. (2017). Irradiation Creep of Zr-Alloys. In: Charit, I., Zhu, Y., Maloy, S., Liaw, P. (eds) Mechanical and Creep Behavior of Advanced Materials. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51097-2_13

Download citation

Publish with us

Policies and ethics