Skip to main content

On the Strain Rate Sensitive Characteristics of Nanocrystalline Aluminum Alloys

  • Conference paper
  • First Online:
Mechanical and Creep Behavior of Advanced Materials

Abstract

For structural applications, ductility is essential along with high strength in nanocrystalline (nc) materials. In general, ductility is controlled by strain hardening and strain rate sensitivity. In conventional materials which are coarse grained, the deformation is mainly dislocation based and accumulation of these dislocations results in work hardening. The deformation mechanisms that are operative in nc materials are distinct and the strain hardening ability is limited in nc materials. Strain rate sensitivity (SRS) and activation volume are the two key parameters which govern the underlying deformation mechanisms in nc materials. Higher SRS value could be an indication of better ductility levels. In general, nanocrystalline single phase fcc metals showed increased SRS, where as bcc metals showed decreased SRS. The addition of second phase effects the overall SRS of the nano composite/alloy. Since producing nc materials in bulk quantities is a challenge, nanoindentation, which can be performed on smaller sized samples, is an useful technique to study SRS and activation volume. Strain rate sensitive characteristics of Al and its alloys are reviewed in this paper. Our earlier work as well as the available literature data on these alloys showed that the nature and structure of the second phase dispersions greatly influence the SRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill Book Company, Boston, 1986)

    Google Scholar 

  2. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)

    Article  Google Scholar 

  3. H. Gleiter, Nanocrystalline materials. Prog. Mater Sci. 33, 223–315 (1989)

    Article  Google Scholar 

  4. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427–556 (2006)

    Article  Google Scholar 

  5. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003)

    Article  Google Scholar 

  6. C. Suryanarayana, C.C. Koch, Nanocrystalline materials—current research and future directions. Hyperfine Interact. 130, 5–44 (2000)

    Article  Google Scholar 

  7. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  8. H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333 (1990)

    Article  Google Scholar 

  9. B. Huang, R.J. Perez, E.J. Lavernia, Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255, 124–132 (1998)

    Article  Google Scholar 

  10. R.Z. Valiev, I.V. Alexandrov, Nanostructured materials from severe plastic deformation. Nanostruct. Mater. 12, 35–40 (1999)

    Article  Google Scholar 

  11. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)

    Article  Google Scholar 

  12. R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zechetbauer, Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33–39 (2006)

    Article  Google Scholar 

  13. I. Kosta, E. Vallés, E. Gómez, M. Sarret, C. Müller, Nanocrystalline CoP coatings prepared by different electrodeposition techniques. Mater. Lett. 65, 2849–2851 (2011)

    Article  Google Scholar 

  14. S.K. Mukherjee, L. Joshi, P.K. Barhai, A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering. Surf. Coat. Technol. 205, 4582–4595 (2011)

    Article  Google Scholar 

  15. C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Ductility of nanostructured materials. MRS Bulletin 24, 54–58 (1999)

    Article  Google Scholar 

  16. R.J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)

    Article  Google Scholar 

  17. M.Y. Wu, O.D. Sherby, Superplasticity in a silicon carbide whisker reinforced aluminum alloy. Scr. Metall. 18, 773–776 (1984)

    Article  Google Scholar 

  18. T. Zhu, J. Li, Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010)

    Article  Google Scholar 

  19. T.G. Langdon, The relationship between strain rate sensitivity and ductility in superplastic materials. Scr. Metall. 11, 997–1000 (1977)

    Article  Google Scholar 

  20. N. Furushiro, S. Hori, The origin of high strain rate sensitivity of flow stresses in superplastic Al-Cu alloys. Scr. Metall. 12, 35–38 (1978)

    Article  Google Scholar 

  21. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657–662 (2003)

    Article  Google Scholar 

  22. C.C. Koch, R.O. Scattergood, K.L. Murty, The mechanical behavior of multiphase nanocrystalline materials. JOM 59, 66–70 (2007)

    Article  Google Scholar 

  23. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic moduli using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  24. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  25. A. Ghosh, On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater. Sci. Eng. A 463, 36–40 (2007)

    Article  Google Scholar 

  26. Y. Wei, A.F. Bower, H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741–1752 (2008)

    Article  Google Scholar 

  27. D. Tabor, The hardness and strength of metals. J. Inst. Metals 79, 1–18 (1951)

    Google Scholar 

  28. Q. Wei, Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42, 1709–1727 (2007)

    Article  Google Scholar 

  29. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421–1430 (2011)

    Article  Google Scholar 

  30. N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, T.G. Langdon, The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677–682 (2011)

    Google Scholar 

  31. N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al–30wt.% Zn alloy using micro- and nanoindentation. Mater. Sci. Eng. A 543, 117–120 (2012)

    Article  Google Scholar 

  32. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002)

    Article  Google Scholar 

  33. Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)

    Article  Google Scholar 

  34. J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater. 53, 189–194 (2005)

    Article  Google Scholar 

  35. D. Gianola, D. Warner, J.-F. Molinari, K. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scripta Mater. 55, 649–652 (2006)

    Article  Google Scholar 

  36. S. Varam, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795–799 (2014)

    Article  Google Scholar 

  37. S. Varam, K.V. Rajulapati, K.B.S. Rao, R.O. Scattergood, K.L. Murty, C.C. Koch, Loading rate-dependent mechanical properties of bulk two-phase nanocrystalline Al–Pb alloys studied by nanoindentation. Metall. Mater. Trans. A 45, 5249–5258 (2014)

    Article  Google Scholar 

  38. S. Varam, P. Narayana, M.D. Prasad, D. Chakravarty, K.V. Rajulapati, K. Bhanu Sankara Rao, Strain rate sensitivity of bulk multi-phase nanocrystalline Al–W-based alloy. Philos. Mag. Lett. 94, 582–591 (2014)

    Article  Google Scholar 

  39. S. Varam, M.D. Prasad, K.B.S. Rao, K.V. Rajulapati, Mechanical properties of in-situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation. Philos. Mag. (2016)

    Google Scholar 

  40. R. Kapoor, J.K. Chakravartty, Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408–5418 (2007)

    Article  Google Scholar 

  41. B. Ahn, R. Mitra, A. Hodge, E.J. Lavernia, S. Nutt, Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation, in: Materials Science Forum (Trans Tech Publications, 2008), pp. 221–226

    Google Scholar 

  42. P. Rodriguez, Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984)

    Article  Google Scholar 

  43. C.X. Huang, W.P. Hu, Q.Y. Wang, Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu–11.1at%Al alloy with low stacking fault energy. Mater. Sci. Eng. A 611, 274–279 (2014)

    Article  Google Scholar 

  44. T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, A. Inoue, Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties. Acta Mater. 51, 4197–4208 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koteswararao V. Rajulapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Varam, S., Bhanu Sankara Rao, K., Rajulapati, K.V. (2017). On the Strain Rate Sensitive Characteristics of Nanocrystalline Aluminum Alloys. In: Charit, I., Zhu, Y., Maloy, S., Liaw, P. (eds) Mechanical and Creep Behavior of Advanced Materials. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51097-2_11

Download citation

Publish with us

Policies and ethics