Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The long-term corrosion behavior of Haynes 230 (H230) alloy in MgCl2–KCl eutectic salt was evaluated at 1273 K for 500 h in Ni crucible in argon gas. The results showed H230 alloy has good corrosion resistance. In addition, corrosion was noted to occur by depletion of Cr, which was deposited on the Ni crucible. Based on the calculation of Gibbs energy of Ni-Cr alloy and exchange current density of Cr in MgCl2–KCl, the Tafel model was constructed to investigate the corrosion potential and rate. The galvanic corrosion can be explained as the predicted results were in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P. Sabharwall, M. Ebner, M. Sohal, P. Sharpe, M. Anderson, K. Sridharan, J. Ambrosek, L. Olson, P. Brooks, Molten salts for high temperature reactors: University of Wisconsin molten salt corrosion and flow loop experiments–Issues identified and path forward. Idaho National Laboratory Report INL/EXT-10-18090, US, Idaho Falls, ID (2010)

    Google Scholar 

  2. A. Steinfeld, R. Palumbo, Solar thermochemical process technology. Encycl. Phys. Sci. Technol. 15(1), 237–256 (2001)

    Google Scholar 

  3. D. Mantha, T. Wang, R.G. Reddy, Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3–NaNO2 quaternary system. Solar Energy Mater. Solar Cells (SOLMAT) 118, 18–21 (2013)

    Article  Google Scholar 

  4. T. Wang, D. Mantha, R.G. Reddy, Novel low melting point quaternary eutectic system for solar thermal energy storage. J. Appl. Energy 102, 1422–1429 (2013)

    Article  Google Scholar 

  5. T. Wang, D. Mantha, R.G. Reddy, Thermodynamic properties of LiNO3–NaNO3–KNO3–2KNO3–Mg(NO3)2 system. Thrmochemica Acta 551, 92–98 (2013)

    Article  Google Scholar 

  6. R.G. Reddy, T. Wang, D. Mantha, Thermodynamic properties of potassium nitrate—magnesium nitrate compound [2KNO3.Mg(NO3)2]. Thermochemica Acta 531, 6–11 (2012)

    Google Scholar 

  7. T. Wang, D. Mantha, R.G. Reddy, Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage. Solar Energy Mater. Solar Cells (SOLMAT) 100, 162–168 (2012)

    Article  Google Scholar 

  8. D. Mantha, T. Wang, R.G. Reddy, Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3 ternary system. J. Phase Diagrams Diffus. (JPED) 33, 110–114 (2012)

    Article  Google Scholar 

  9. T. Wang, S. Viswanathan, D. Mantha, R.G. Reddy, Thermal conductivity of the ternary eutectic LiNO3–NaNO3–KNO3 salt mixture in the solid state using a simple inverse method. Solar Energy Mater. Solar Cells (SOLMAT) 102, 201–207 (2012)

    Article  Google Scholar 

  10. H.E. Reilly, G.J. Kolb, An evaluation of molten-salt power towers including results of the solar two project. Sandia National Labs Report SAND2001-3674, Sandia National Labs, US, Albuquerque, NM; US, Livermore, CA (2001)

    Google Scholar 

  11. S. Passerini, Optical and chemical properties of molten salt mixtures for use in high temperature power systems. Ph.D. Thesis, Massachusetts Institute of Technology, Massachusetts, US, 2010

    Google Scholar 

  12. K. Sridharan, M. Anderson, T. Allen, M. Corradini, Liquid salts as media for process heat transfer from VHTR’s: forced convective channel flow thermal hydraulics, materials, and coating. DOE Report No. DOE/ID14826, University of Wisconsin, Madison, US (2012)

    Google Scholar 

  13. D.F. Williams, Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop. Oak Ridge National Laboratory Report ORNL/TM-2006/69, Oak Ridge, Tennessee, US (2006)

    Google Scholar 

  14. M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties. Idaho National Laboratory Report INL/EXT-10-18297, Idaho Falls. ID, US (2010)

    Google Scholar 

  15. H. Susskind, F.B. Hill, L. Green, S. Kalish, L.E. Kukacka, W.E. McNulty, Jr. E. Wirsing, Corrosion studies for a fused salt-liquid metal extraction process for the liquid metal fuel reactor. Brookhaven National Lab Report BNL-585, Upton, NY, US (1960)

    Google Scholar 

  16. S.N. Flengas, T.R. Ingraham, Electromotive force series of metals in fused salts and activities of metal chlorides in 1: 1 molar KCl-NaCl solutions. J. Electrochem. Soc. 106(8), 714–721 (1959)

    Article  Google Scholar 

  17. M. Anderson, K. Sridhara, T. Allen, P. Peterson, Liquid salt heat exchanger technology for vhtr based applications. Report NEUP-Project-09-777, University of Wisconsin, Madison, WI, US; University of California at Berkeley, CA, US; Battelle Energy Alliance, LLC, US (2012)

    Google Scholar 

  18. L.C. Olson, D.B. Garcia, R. Fuentes, R.M. Marinez, J. Gray, H.S. Cho, Z.J. Van, R. Reddy, Fundamental corrosion studies in high-temperature molten salt systems for next generation concentrated solar power systems. Savannah River National Laboratory Report SRNL-STI-2013-00507, Savannah, GA, US (2013)

    Google Scholar 

  19. L.C. Olson, J.W. Ambrosek, K. Sridharan, M.H. Anderson, T.R. Allen, Materials corrosion in molten LiF–NaF–KF salt. J. Fluor. Chem. 130(1), 67–73 (2009)

    Article  Google Scholar 

  20. J. Qiu, Y. Zou, G. Yu, H. Liu, Y. Jia, Z. Li, P. Huai, X. Zhou, H. Xu, Compatibility of container materials with Cr in molten FLiNaK salt. J. Fluor. Chem. 168, 69–74 (2014)

    Article  Google Scholar 

  21. I.N. Ozeryanaya, Corrosion of metals by molten salts in heat-treatment processes. Met. Sci. Heat Treat. 27(3), 184–188 (1985)

    Article  Google Scholar 

  22. K. Sadananda, P. Shahinian, Creep crack growth behavior of several structural alloys. Metall. Trans. A 14(7), 1467–1480 (1983)

    Article  Google Scholar 

  23. T. Wang, D. Mantha, R.G. Reddy, Novel high thermal stability LiF–Na2CO3–K2CO3 eutectic ternary system for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 140, 366–375 (2015)

    Article  Google Scholar 

  24. T. Wang, R.G. Reddy, Corrosion of nickel based alloys in ultra high temperature heat transfer fluid. High Temperature Materials and Processes (2016)

    Google Scholar 

  25. W. Huang, Y.A. Chang, Thermodynamic properties of the Ni–Al–Cr system. Intermetallics 7(8), 863–874 (1999)

    Article  Google Scholar 

  26. B. Sundman, Modification of the two-sublattice model for liquids. Calphad. 15(2), 109–119 (1991)

    Article  Google Scholar 

  27. A. Cotarta, J. Bouteillon, J.C. Poignet, Electrochemistry of molten LiCl–KCl–CrCl3 and LiCl–KCl–CrCl2 mixtures. J. Appl. Electrochem. 27(6, 199), 651–658

    Google Scholar 

  28. D. Inman, J.C. Legey, R. Spencer, The electrochemistry of chromium in molten LiCl+ KCl. J. Electroanal. Chem. Interfacial Electrochem. 61(3), 289–301 (1975)

    Article  Google Scholar 

  29. L.C. Olson, D.B. Garcia, R. Fuentes, R.M. Marinez, J. Gray, H.S. Cho, Z.J. Van, R. Reddy, Fundamental corrosion studies in high-temperature molten salt systems for next generation concentrated solar power systems. Savannah River National Laboratory Final Report; Savannah, GA, US (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Peng, Y., Reddy, R.G. (2017). Corrosion Mechanism of Haynes 230 Alloy with Ni Crucible in MgCl2–KCl. In: Wang, S., Free, M., Alam, S., Zhang, M., Taylor, P. (eds) Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51091-0_37

Download citation

Publish with us

Policies and ethics